scholarly journals Liposome formulations of combretastatin a4 and 4-arylcoumarin analog prodrugs: antitumor effect in the mouse model of breast cancer

2012 ◽  
Vol 58 (3) ◽  
pp. 326-338
Author(s):  
E.V. Moiseeva ◽  
N.R. Kuznetsova ◽  
E.V. Svirshchevskaya ◽  
N.V. Bovin ◽  
N.S. Sitnikov ◽  
...  

The antimitotic agent combretastatin A4 (СА-4) has been suggested as an antivascular agent for anticancer therapy relatively recently. To reduce systemic toxicity by means of administration in liposome formulations, in this study new lipophilic prodrugs, oleic derivatives of СА-4 and its 4-arylcoumarin analog (СА4-Ole and ArC-Ole, respectively), have been synthesized: Liposomes of 100 nm mean diameter prepared on the basis of egg phosphatidylcholine and phosphatidylinositol from bakers yeast have been shown to include completely up to 10 mol. % of СА4-Ole, or 7 mol. % of ArC-Ole. Also, prodrug bearing liposomes decorated with tetrasaccharide selectin ligand Sialyl Lewis X (SiaLeX) have been constructed to achieve targeting to endothelium under neovascularization. The antitumor activity in vivo was studied in the model of slowly growing mouse breast cancer. Under the used dose (22 mg/kg) as well as the regimen of treatment (four injections, one per a week, starting from the appearance of palpable tumors) cytostatic CA-4 did not reveal any anticancer effect, and oppositely even stimulated tumor growth. Liposome formulations of CA4-Ole did not show such stimulation. However, to achieve pronounced antitumor effect, number of injections of liposomes should be apparently elevated. New antimitotic agent ArC revealed cytotoxic activity of only one tenth value obtained for CA-4 in vitro in the culture of human breast carcinoma cells. Nevertheless, in vivo in the mouse model of breast cancer this compound showed antitumor effect under double СА-4 equivalent dose. The results demonstrate availability of SiaLeX-liposomes loaded with ArC-Ole: this preparation began to inhibit tumor growth already after the second injection. It is necessary further to choose doses and regimens of administration both for ArC and liposome formulations bearing ArC-Ole.

2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofia M. Saraiva ◽  
Carlha Gutiérrez-Lovera ◽  
Jeannette Martínez-Val ◽  
Sainza Lores ◽  
Belén L. Bouzo ◽  
...  

AbstractTriple negative breast cancer (TNBC) is known for being very aggressive, heterogeneous and highly metastatic. The standard of care treatment is still chemotherapy, with adjacent toxicity and low efficacy, highlighting the need for alternative and more effective therapeutic strategies. Edelfosine, an alkyl-lysophospholipid, has proved to be a promising therapy for several cancer types, upon delivery in lipid nanoparticles. Therefore, the objective of this work was to explore the potential of edelfosine for the treatment of TNBC. Edelfosine nanoemulsions (ET-NEs) composed by edelfosine, Miglyol 812 and phosphatidylcholine as excipients, due to their good safety profile, presented an average size of about 120 nm and a neutral zeta potential, and were stable in biorelevant media. The ability of ET-NEs to interrupt tumor growth in TNBC was demonstrated both in vitro, using a highly aggressive and invasive TNBC cell line, and in vivo, using zebrafish embryos. Importantly, ET-NEs were able to penetrate through the skin barrier of MDA-MB 231 xenografted zebrafish embryos, into the yolk sac, leading to an effective decrease of highly aggressive and invasive tumoral cells’ proliferation. Altogether the results demonstrate the potential of ET-NEs for the development of new therapeutic approaches for TNBC.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2204
Author(s):  
Meng-Die Yang ◽  
Yang Sun ◽  
Wen-Jun Zhou ◽  
Xiao-Zheng Xie ◽  
Qian-Mei Zhou ◽  
...  

Triple-negative breast cancer (TNBC) is a refractory type of breast cancer that does not yet have clinically effective drugs. The aim of this study is to investigate the synergistic effects and mechanisms of resveratrol combined with cisplatin on human breast cancer MDA-MB-231 (MDA231) cell viability, migration, and invasion in vivo and in vitro. In vitro, MTS assays showed that resveratrol combined with cisplatin inhibits cell viability as a concentration-dependent manner, and produced synergistic effects (CI < 1). Transwell assay showed that the combined treatment inhibits TGF-β1-induced cell migration and invasion. Immunofluorescence assays confirmed that resveratrol upregulated E-cadherin expression and downregulated vimentin expression. Western blot assay demonstrated that resveratrol combined with cisplatin significantly reduced the expression of fibronectin, vimentin, P-AKT, P-PI3K, P-JNK, P-ERK, Sma2, and Smad3 induced by TGF-β1 (p < 0.05), and increased the expression of E-cadherin (p < 0.05), respectively. In vivo, resveratrol enhanced tumor growth inhibition and reduced body weight loss and kidney function impairment by cisplatin in MDA231 xenografts, and significantly reduced the expressions of P-AKT, P-PI3K, Smad2, Smad3, P-JNK, P-ERK, and NF-κB in tumor tissues (p < 0.05). These results indicated that resveratrol combined with cisplatin inhibits the viability of breast cancer MDA231 cells synergistically, and inhibits MDA231 cells invasion and migration through Epithelial-mesenchymal transition (EMT) approach, and resveratrol enhanced anti-tumor effect and reduced side of cisplatin in MDA231 xenografts. The mechanism may be involved in the regulations of PI3K/AKT, JNK, ERK and NF-κB expressions.


2013 ◽  
Vol 65 (3) ◽  
pp. 460-468 ◽  
Author(s):  
Meilan Xue ◽  
Yinlin Ge ◽  
Jinyu Zhang ◽  
Yongchao Liu ◽  
Qing Wang ◽  
...  

2020 ◽  
Vol 6 (8) ◽  
pp. eaaw9960 ◽  
Author(s):  
Yuanyuan Qin ◽  
Weilong Chen ◽  
Guojuan Jiang ◽  
Lei Zhou ◽  
Xiaoli Yang ◽  
...  

Triple-negative breast cancer (TNBC) is life-threatening because of limited therapies and lack of effective therapeutic targets. Here, we found that moesin (MSN) was significantly overexpressed in TNBC compared with other subtypes of breast cancer and was positively correlated with poor overall survival. However, little is known about the regulatory mechanisms of MSN in TNBC. We found that MSN significantly stimulated breast cancer cell proliferation and invasion in vitro and tumor growth in vivo, requiring the phosphorylation of MSN and a nucleoprotein NONO-assisted nuclear localization of phosphorylated MSN with protein kinase C (PKC) and then the phosphorylation activation of CREB signaling by PKC. Our study also demonstrated that targeting MSN, NONO, or CREB significantly inhibited breast tumor growth in vivo. These results introduce a new understanding of MSN function in breast cancer and provide favorable evidence that MSN or its downstream molecules might serve as new targets for TNBC treatment.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sabrina Bimonte ◽  
Antonio Barbieri ◽  
Domenica Rea ◽  
Giuseppe Palma ◽  
Antonio Luciano ◽  
...  

Morphine is considered a highly potent analgesic agent used to relieve suffering of patients with cancer. Severalin vitroandin vivostudies showed that morphine also modulates angiogenesis and regulates tumour cell growth. Unfortunately, the results obtained by these studies are still contradictory. In order to better dissect the role of morphine in cancer cell growth and angiogenesis we performedin vitrostudies on ER-negative human breast carcinoma cells, MDA.MB231 andin vivostudies on heterotopic mouse model of human triple negative breast cancer, TNBC. We demonstrated that morphinein vitroenhanced the proliferation and inhibited the apoptosis of MDA.MB231 cells.In vivostudies performed on xenograft mouse model of TNBC revealed that tumours of mice treated with morphine were larger than those observed in other groups. Moreover, morphine was able to enhance the neoangiogenesis. Our data showed that morphine at clinical relevant doses promotes angiogenesis and increases breast cancer progression.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 10101-10101
Author(s):  
J. Hartman ◽  
K. Lindberg ◽  
J. Inzunza ◽  
J. Wan ◽  
A. Ström ◽  
...  

10101 Background: Estrogens are well known stimulators of breast cancer cell growth in vitro as well as in vivo. Two different estrogen receptors exist, namely estrogen receptor (ER) α and β. ERα mediates the proliferative effect of estrogen in breast cancer cells and we have earlier shown that ERβ inhibits cell-cycle progression in vitro. Estrogens are well known stimulators of in vivo breast cancer cell growth as well as angiogenesis, and the effect is mediated through ERα. The function of ERβ in this context is not well understood. Methods: We have used ERα-positive T47D breast cancer cells stably transfected with a Tet/Off regulated ERβ expression vector system. The ERβ-inducible tumor cells are studied in vitro as well as in vivo. Results: By transplanting ERβ-inducible breast cancer cells into SCID-mice, we show that ERβ inhibits tumor growth and reduces the volume of established tumors. Furthermore, we show by immunohistochemistry, that the number of blood microvessels in the tumor periphery is decreased by ERβ expression, counteracting the well-known pro-angiogenic effect of ERα. By Western blot analysis on tumor extracts, we show that the concentration of the important pro-angiogenic growth factors VEGF and bFGF, normally expressed by breast tumor cells, is decreased in the ERβ-expressing tumors compared to the normal tumors. To exclude that the observed anti-angiogenic effect is just a result of reduced tumor growth, we incubated Tet/Off regulated ERβ expressing cells in vitro, during non-hypoxic conditions. We found that the expression of ERβ leads to decreased expression of VEGF and PDGFβ at the mRNA and protein-levels. In transient transfection assays, we found estrogen-ERα mediated up regulation of VEGF, PDGFβ and bFGF-promoter activities in T47D cells, and these activities were all suppressed following co-transfection with an ERβ-expression vector. Conclusions: We conclude that ERβ inhibits growth factor expression at transcriptional level in breast cancer cells; taken together, our data indicates that ERβ inhibits growth and angiogenesis of tumors formed by T47D breast cancer cells. This makes ERβ an interesting therapeutic target in breast cancer and perhaps treatment with the newly designed ERβ-selective ligands might work as a new anti-proliferative and anti-angiogenic therapy. No significant financial relationships to disclose.


2020 ◽  
Vol 10 (6) ◽  
pp. 254
Author(s):  
Yoshihiko Shibayama ◽  
Hiroaki Kanouchi ◽  
Akira Fujii ◽  
Masanobu Nagano

Brewed rice vinegar, Kurozu, is a traditional Japanese vinegar with a dark amber color. Kurozu is produced in a regional area of Japan using traditional techniques and made inside handcrafted pottery jars. Kurozu is used as both a seasoning and a healthcare supplement. In vitro and in vivo investigations of ingredients in Kurozu have been carried out. Studies of the functional aspects of Kurozu began in the 1980s, and the health promoting and disease preventing effects of Kurozu have since been elucidated. It was reported that Kurozu improved the symptoms of hypertension, allergies, hypercholesterolemia, enhanced carbohydrate metabolism, and inhibited tumor growth. Kurozu-Moromi is an insoluble product created from the fermentation of Kurozu. Kurozu-Moromi also shows valuable properties, including improvement in dyslipidemia, prevention of hyperglycemia, antitumor effect, and antiallergic activity.Keywords: Amber color, Brewed vinegar, Functionality, Moromi, Pottery jars


2021 ◽  
Author(s):  
Anvar Soleimani ◽  
Farshad Mirzavi ◽  
Sara Nikoofal sahlabadi ◽  
Amin reza Nikpoor ◽  
Bita Taghizadeh ◽  
...  

Abstract Background Blocking CD73 ectonucleotidase has been proposed as a potential therapeutic approach for cancer treatment. The purpose of the present study was to investigate the antitumor effect of a novel EGFR-Targeted liposomal CD73 siRNA formulation in combination therapy with Doxil in the 4T1 mouse model. Methods CD73 siRNA was encapsulated into nanoliposomes by the ethanol injection method. After preparation, characterization, morphology, and stability evaluation of formulations, the toxicity was measured by MTT assay. Uptake assay and efficiency of the liposomal formulations were investigated on the 4T1 cell line. The liposomal formulation containing CD73 siRNA was targeted with GE11 peptide for in vivo evaluations. Antitumor activity of prepared formulations in combination with Doxil was studied in mice bearing 4T1 metastatic breast cancer cells. Finally, the antitumor efficacy of the formulation in concomitant treatment with Doxil was evaluated in a mouse model of breast cancer. Results The size of prepared liposomal formulations at N/P=16 for the liposomal CD73 siRNA and GE11-lipo CD73 siRNA groups were 89 nm ± 4.4 and 95 nm ± 6.6, respectively. The nanoparticle’s PDI was less than 0.3 and their surface charge was below 10 mV. The results demonstrated that N/P=16 yielded the best encapsulation efficiency which was 94% ± 3. 3. AFM results showed that the liposomes were spherical in shape and were less than 100 nm in size. The results of the MTT assay showed significant toxicity of the liposomes containing CD73 siRNA during the 48-hour cell culture. Real-time PCR and flow cytometry results showed that liposomes containing CD73 siRNA could effectively downregulate CD73 expression. Liposomal formulations were able to significantly downregulate CD73 gene expression, in vivo. However, CD73 downregulation efficiency was significantly higher for targeted form in comparison with non-targeted formulation (P-value <0.01). The combination showed maximum tumor growth delay with remarkable survival improvement compared to the control group. Studying the immune responses in the treatment groups which received doxorubicin, showed decreased number of lymphocytes in the tumor environment. However, this decrease was lower in the combination therapy group. Finally, our results clearly showed that CD73 downregulation increases the activity of CD8+ lymphocytes (INF-ℽ production) and also significantly decreases the Foxp3 in the CD25+ lymphocytes compared to the control group. Conclusion GE11-Lipo CD73 siRNA formulation can efficiently knock down CD73 ectonucleotidase. Also, the efficacy of Doxil is significantly enhanced via the downregulation of CD73 ectonucleotidase.


Sign in / Sign up

Export Citation Format

Share Document