scholarly journals Examination of soils and crops after the inundations of 1st February, 1953. III. Sensitivity to salt of inundated fruit crops.

1955 ◽  
Vol 3 (1) ◽  
pp. 15-34
Author(s):  
W.G. Beeftink

Characteristic symptoms of salt water flood damage are described for apples, pears, plums, cherries, currants, gooseberry, walnuts, grapes and mulberries. In general the crops showed symptoms of drying out, indicating their inability to absorb enough water. A table of the approximate sensitivity of the fruit crops, and also of apple and pear varieties was compiled; there was a wider range of sensitivity in apples than in pears. The sensitivity of the chief Malling rootstocks did not appear to run parallel to their vigour. The salt content of the soil moisture was the limiting factor for apple and pear recovery; 7-8 g. per litre for apples, and 11-12 g. for pears were the limits beyond which trees could not be saved. Flooding had no influence on the growth condition of apples and pears until after it had lasted 8 or 9 weeks. Tree age had no clear effect on sensitivity, though apple trees of 25 years and over had less resistance. Deep cultivation before flooding, soil exhaustion, and general neglect had detrimental effects on tree resistance. (Abstract retrieved from CAB Abstracts by CABI’s permission)

Author(s):  
S.V. Makarychev ◽  

The growth and fruiting of fruit crops is interconnected with the biotic and abiotic conditions of the natural envi-ronment as water, heat and nutritional regimes in the soil which continuously change in space and time. The main limiting factor in the forest-steppe zone of the Altai Region is the moisture content in the soil profile since plants often suffer from moisture deficit. The available soil moisture (ASM) storage in the apple orchard in April 2012 was satis-factory. In Mayand in the summer, they dropped to zero, so the plants suffered from water hunger during the grow-ing season. Under pears, at the beginning of the growing season, the ASM turned out to be higher than under the apple trees, but from June to August they alsodecreased. As a result, the irrigation rates were the same as for the apple trees. The summer of 2013 was rainy and that af-fected the water resources in the chernozem layer. At the same time, the ASM deficit did not exceed 85 mm in June and July, and in the remaining periods did not rise above 50 mm. In the pear orchard, the moisture storage did not fall below 30 mm. In one-meter chernozem layer in April 2012, the available soil moisture storage under the apple trees corresponded to a very good level. In June and July, the moisture content dropped below the wilting moisture. In spring, the ASM under the pear plantations were consid-ered satisfactory. On the following months, a severe mois-ture deficit arose until autumn. In 2013, the ASM in the apple orchard did not exceed 50 mm in summer. Under the pears, in May they even reached 118 mm, but then dropped to 30 mm and that also required irrigation. Since the season of 2014 was an arid one, the water situation in one-meter layer of chernozem turned out to be disastrous.


Author(s):  
Raveesha P ◽  
K. E. Prakash ◽  
B. T. Suresh Babu

The salt water mixes with fresh water and forms brackish water. The brackish water contains some quantity of salt, but not equal to sea water. Salinity determines the geographic distribution of the number of marshes found in estuary. Hence salinity is a very important environmental factor in estuary system. Sand is one major natural aggregate, required in construction industry mainly for the manufacture of concrete. The availability of good river sand is reduced due to salinity. The quality of sand available from estuarine regions is adversely affected due to this reason. It is the responsibility of engineers to check the quality of sand and its strength parameters before using it for any construction purpose. Presence of salt content in natural aggregates or manufactured aggregates is the cause for corrosion in steel. In this study the amount of salinity present in estuary sand was determined. Three different methods were used to determine the salinity in different seasonal variations. The sand sample collected nearer to the sea was found to be high in salinity in all methods.  It can be concluded that care should be taken before we use estuary sand as a construction material due to the presence of salinity.


Author(s):  
V. A. Shishkin ◽  
E. P. Rybalkin ◽  
E. B. Balykina

Simulation modeling of phytophagans’ influence on the yield of seed fruit crops, in particular apple trees, was carried out. By means of simulation models the importance of phytophagans’ influence at different stages of the vegetation period and the period of fruit ripening was revealed. The software package Matlab was used to build simulation models. As a result, simulation models with nonlinear characteristics were obtained, which maximally reflected the studied processes. The developed models imitate the process of phytophagans’ development. Generation change of pests and all stages of their development are simulated. Their respective numbers are recorded at each stage for all generations. The development process at each stage is modeled by separate subsystems of the simulation model. To simulate the development of one generation of pests, these subsystems are connected by external links. In addition, part of the relationships provides a simulation of generational change. There are a number of input parameters that allow to configure the simulation of the process of changing generations, taking into account the peculiarities of the development of various phytophagans.


2008 ◽  
Vol 59 (4) ◽  
pp. 354 ◽  
Author(s):  
J. T. Christopher ◽  
A. M. Manschadi ◽  
G. L. Hammer ◽  
A. K. Borrell

Water availability is a key limiting factor in wheat production in the northern grain belt of Australia. Varieties with improved adaptation to such conditions are actively sought. The CIMMYT wheat line SeriM82 has shown a significant yield advantage in multi-environment screening trials in this region. The objective of this study was to identify the physiological basis of the adaptive traits underpinning this advantage. Six detailed experiments were conducted to compare the growth, development, and yield of SeriM82 with that of the adapted cultivar, Hartog. The experiments were undertaken in field environments that represented the range of moisture availability conditions commonly encountered by winter crops grown on the deep Vertosol soils of this region. The yield of SeriM82 was 6–28% greater than that of Hartog, and SeriM82 exhibited a stay-green phenotype by maintaining green leaf area longer during the grain-filling period in all environments where yield was significantly greater than Hartog. However, where the availability of deep soil moisture was limited, SeriM82 failed to exhibit significantly greater yield or to express the stay-green phenotype. Thus, the stay-green phenotype was closely associated with the yield advantage of SeriM82. SeriM82 also exhibited higher mean grain mass than Hartog in all environments. It is suggested that small differences in water use before anthesis, or greater water extraction from depth after anthesis, could underlie the stay-green phenotype. The inability of SeriM82 to exhibit stay-green and higher yield where deep soil moisture was depleted indicates that extraction of deep soil moisture is important.


Pedosphere ◽  
2017 ◽  
Vol 27 (6) ◽  
pp. 1116-1124 ◽  
Author(s):  
Ye XIAO ◽  
Zhigang HUANG ◽  
Fan YANG ◽  
Zhichun WANG ◽  
Xia ZHOU ◽  
...  

1997 ◽  
Vol 77 (3) ◽  
pp. 399-420 ◽  
Author(s):  
Pauliina Palonen ◽  
Deborah Buszard

This article gives an overview of the current state of cold hardiness research in fruit crops by reviewing the recently published studies on cold hardiness of both tree fruit and berry crops. Topics discussed include cold hardiness of fruit species, cultivars and different plant organs, biophysical and biochemical aspects of hardiness, evaluation of hardiness, as well as endogenous, cultural and environmental factors affecting cold hardiness in these species. Lack of cold hardiness is a major limiting factor for production of fruit crops in many regions of the world and improved cold hardiness one of the major objectives in numerous breeding programs and research projects. Screening cultivars or selections for cold hardiness is commonly done, and different methods applied to the evaluation of hardiness are discussed. The physical limit of deep supercooling may be a restricting factor for expanding the production of some fruit crops, such as Prunus species and pear. As for biochemical aspects, a relationship between carbohydrates and cold hardiness is most commonly found. Studies have also been made on different hardiness modifying cultural factors including rootstock, crop load, raised beds and application of growth regulators. The latter seems promising for some species. Cold hardiness is an extremely complex phenomenon and understanding different mechanisms involved is critical. Since hardiness is, however, primarily affected by genotype, developing cold-hardy fruit cultivars and effective screening methods for hardiness are essential. Finally, cultural practices may be improved to further enhance hardiness. Key words: Berries, cold hardiness, fruits, small fruits, stress, winter hardiness


2021 ◽  
pp. 1-15
Author(s):  
Joseph Levy

Abstract Outside of hydrologically wetted active layer soils and humidity-sensitive soil brines, low soil moisture is a limiting factor controlling biogeochemical processes in the McMurdo Dry Valleys. But anecdotal field observations suggest that episodic wetting and darkening of surface soils in the absence of snowmelt occurs during high humidity conditions. Here, I analyse long-term meteorological station data to determine whether soil-darkening episodes are present in the instrumental record and whether they are, in fact, correlated with relative humidity. A strong linear correlation is found between relative humidity and soil reflectance at the Lake Bonney long-term autonomous weather station. Soil reflectance is found to decrease annually by a median of 27.7% in response to high humidity conditions. This magnitude of darkening is consistent with soil moisture rising from typical background values of < 0.5 wt.% to 2–3 wt.%, suggesting that regional atmospheric processes may result in widespread soil moisture generation in otherwise dry surface soils. Temperature and relative humidity conditions under which darkening is observed occur for hundreds of hours per year, but are dominated by episodes occurring between midnight and 07h00 local time, suggesting that wetting events may be common, but are not widely observed during typical diel science operations.


2015 ◽  
Vol 19 (4) ◽  
pp. 1857-1869 ◽  
Author(s):  
A. Castillo ◽  
F. Castelli ◽  
D. Entekhabi

Abstract. Distributed and continuous catchment models are used to simulate water and energy balance and fluxes across varied topography and landscape. The landscape is discretized into computational plan elements at resolutions of 101–103 m, and soil moisture is the hydrologic state variable. At the local scale, the vertical soil moisture dynamics link hydrologic fluxes and provide continuity in time. In catchment models these local-scale processes are modeled using 1-D soil columns that are discretized into layers that are usually 10−3–10−1 m in thickness. This creates a mismatch between the horizontal and vertical scales. For applications across large domains and in ensemble mode, this treatment can be a limiting factor due to its high computational demand. This study compares continuous multi-year simulations of soil moisture at the local scale using (i) a 1-pixel version of a distributed catchment hydrologic model and (ii) a benchmark detailed soil water physics solver. The distributed model uses a single soil layer with a novel dual-pore structure and employs linear parameterization of infiltration and some other fluxes. The detailed solver uses multiple soil layers and employs nonlinear soil physics relations to model flow in unsaturated soils. Using two sites with different climates (semiarid and sub-humid), it is shown that the efficient parameterization in the distributed model captures the essential dynamics of the detailed solver.


1974 ◽  
Vol 14 (69) ◽  
pp. 577 ◽  
Author(s):  
D Sitepu ◽  
HR Wallace

Soil round trees in an Adelaide apple orchard was sampled to assess the concentrations of Pythium spp., Phytophthora spp., stylet-bearing nematodes, soil texture (per cent clay), soil moisture and pH. Correlations between these factors and the size of apple trees (trunk circumference) suggested that parasitic nematodes, Pythium spp. and pH might together be important factors inhibiting tree growth. On the basis of these results, a statement is made on the possible causes of retarded growth in the orchard, and how the problem might be overcome. The main purpose of the work was to devise a simple approach that would enable diagnoses to be made of the causes of retarded growth or poor yield in a crop where several factors seemed to be involved. Such an approach might be useful to extension workers who have to deal with many plant disease problems at the same time.


2019 ◽  
Vol 16 (5) ◽  
pp. 1184-1197 ◽  
Author(s):  
Jiang-tao Fu ◽  
Xia-song Hu ◽  
Xi-lai Li ◽  
Dong-mei Yu ◽  
Ya-bin Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document