scholarly journals New Delhi metallo-beta-lactamase-1: A weapon for the newly emerging drug-resistant bacteria

2017 ◽  
Vol 69 (1) ◽  
pp. 29
Author(s):  
Sanghamitra Padhi

<p class="ABS">The world has seen the emergence of many micro-organisms in the recent past which can curb the human population with their newly built genetic make-up. The latest addition to this list of panic creating organisms is, bacteria encoding the gene for New Delhi metallo-beta-lactamase (NDM)-1. NDM-1 is an enzyme that can hydrolyse and inactivate carbapenems, which are used as a last resort for the treatment of multiresistant bacterial infections. Name of these bacteria were not found in the medical literature before December 2009, because of which it can take the credit of becoming a powerful emerging bacteria which are difficult to treat. Besides <span class="Italic">Escherichia</span><span class="CharOverride-2"> </span><span class="Italic">coli</span> and <span class="BoldItalic CharOverride-2">Klebsiella pneumoniae</span>, other bacterial strains have also expressed the gene for NDM-1, which are detected in many countries.</p><div> </div>

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Nurit Beyth ◽  
Yael Houri-Haddad ◽  
Avi Domb ◽  
Wahid Khan ◽  
Ronen Hazan

Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The present review discusses the activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents. Factors contributing to nanoparticle performance in the clinical setting, their unique properties, and mechanism of action as antibacterial agents are discussed in detail.


Author(s):  
Daniel Berman

How can we prevent the rise of resistance to antibiotics? In this video, Daniel Berman,  Nesta Challenges, discusses the global threat of AMR and how prizes like the Longitude Prize can foster the development of rapid diagnostic tests for bacterial infections, helping to contribute towards reducing the global threat of drug resistant bacteria. Daniel outlines how accelerating the development of rapid point-of-care tests will ensure that bacterial infections are treated with the most appropriate antibiotic, at the right time and in the right healthcare setting.


2020 ◽  
Vol 8 (18) ◽  
pp. 4975-4996
Author(s):  
Pengfei Zou ◽  
Wen-Ting Chen ◽  
Tongyi Sun ◽  
Yuanyuan Gao ◽  
Li-Li Li ◽  
...  

Bacterial infections, especially the refractory treatment of drug-resistant bacteria, are one of the greatest threats to human health. Self-assembling peptide-based strategies can specifically detect the bacteria at the site of infection in the body and kill it.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Junaid Iqbal ◽  
Ruqaiyyah Siddiqui ◽  
Shahana Urooj Kazmi ◽  
Naveed Ahmed Khan

Antibiotic resistance continues to pose a significant problem in the management of bacterial infections, despite advances in antimicrobial chemotherapy and supportive care. Here, we suggest a simple, inexpensive, and easy-to-perform assay to screen antimicrobial compounds from natural products or synthetic chemical libraries for their potential to work in tandem with the available antibiotics against multiple drug-resistant bacteria. The aqueous extract ofJuglans regiatree bark was tested against representative multiple drug-resistant bacteria in the aforementioned assay to determine whether it potentiates the activity of selected antibiotics. The aqueous extract ofJ. regiabark was added to Mueller-Hinton agar, followed by a lawn of multiple drug-resistant bacteria,Salmonella typhior enteropathogenicE. coli. Next, filter paper discs impregnated with different classes of antibiotics were placed on the agar surface. Bacteria incubated with extract or antibiotics alone were used as controls. The results showed a significant increase (>30%) in the zone of inhibition around the aztreonam, cefuroxime, and ampicillin discs compared with bacteria incubated with the antibiotics/extract alone. In conclusion, our assay is able to detect either synergistic or additive action ofJ. regiaextract against multiple drug-resistant bacteria when tested with a range of antibiotics.


2021 ◽  
Vol 15 (10) ◽  
pp. 2506-2511
Author(s):  
Nayyab Sultan ◽  
Sabahat Javaid Butt ◽  
Wajeeha Mehak ◽  
Samreen Qureshi ◽  
Syed Hamza Abbas ◽  
...  

Antibiotics have played a crucial role in the treatment of bacterial infections. Past few decades are marked with advancement of multidrug resistant (MDR) pathogens, which have endangered antibiotic’s therapeutic efficacy. Scientific world is now struggling with the crisis of MDR pathogens. This supreme matter demands careful attention or otherwise it would jeopardize clinical management of infectious diseases. Implication of alternative approaches can pave a new way in the treatment of these troublesome bacteria. Tea leaves are known to pose antibacterial activity against many pathogenic microorganisms. This review has summarized the antibacterial potential of tea leave’s extracts against resistant bacterial pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa, Helicobacter pylori, Escherichia coli, Klebsiella pneumonia, Salmonella typhi, Acenitobacter spp, Campylobacter spp. Consumption of natural products such as tea may very well replace, minimize or obliterate this complicated situation. Keywords: Anti-bacterial, Tea, Camellia sinensis, Drug resistant bacteria, Antibiotic resistant bacteria, Synergism, Polyphenols.


Author(s):  
G.M. Rossolini

Antibiotics are one of the most significant advancements of modern medicine. They have changed the prognosis of several bacterial infections, and made possible advanced medical practices associated with a high risk of infectious complications. Unfortunately, antibiotics are affected by the phenomenon of antibiotic resistance, which jeopardizes their efficacy. In recent years, antibiotic discovery and development has been lagging, due to a lower appeal of this sector for the pharmaceutical industry, while antibiotic resistance has continued to evolve with the eventual emergence and dissemination of bacterial strains which are resistant to most available antibiotics and pose a major challenge to antimicrobial chemotherapy. This worrisome scenario, indicated as the “antibiotic resistance crisis”, has been acknowledged by Scientific Societies and Public Health Agencies, and is now gathering an increasing attention from the Media and Governments. This article reviews the antibiotic-resistant pathogens which currently pose major problems in terms of clinical and epidemiological impact, and briefly discuss future perspective in this field.


2020 ◽  
Vol 15 ◽  
Author(s):  
Jan H. Beumera ◽  
Jianxia Guo ◽  
Evan C. Ray ◽  
Jonas Scemama ◽  
Robert A. Parise ◽  
...  

Background: To address multidrug resistance we developed engineered cationic antimicrobial peptides (eCAPs). Lead eCAP WLBU2 displays potent activity against drug-resistant bacteria and effectively treats lethal bacterial infections in mice reducing bacterial loads to undetectable levels in diverse organs. Background: To address multidrug resistance we developed engineered cationic antimicrobial peptides (eCAPs). Lead eCAP WLBU2 displays potent activity against drug-resistant bacteria and effectively treats lethal bacterial infections in mice reducing bacterial loads to undetectable levels in diverse organs. Objective: To support development of WLBU2, we conducted a mass balance study. Methods: CD1 mice were administered 10, 15, 20 and 30 mg/kg QDx5 WLBU2 or a single dose of [14C]-WLBU2 at 15 mg/kg IV. Tolerability, tissue distribution and excretion were evaluated with liquid scintillation and HPLCradiochromatography. Results: The maximum tolerated dose of WLBU2 is 20 mg/kg IV. We could account for greater than >96% of the radioactivity distributed within mouse tissues at 5 and 15 min. By 24 h, only ~40-50% of radioactivity remained in the mice. The greatest % of the dose was present in liver, accounting for ~35% of radioactivity at 5 and 15 min, and ~ 8% of radioactivity remained at 24 h. High radioactivity was also present in kidneys, plasma, red blood cells and lungs, while less than 0.2% of radioactivity was present in brain, fat, or skeletal muscle. Urinary and fecal excretion accounted for 12.5 and 2.2% of radioactivity at 24 h. Conclusion: WLBU2 distributes widely to mouse tissues and is rapidly cleared with a terminal radioactivity half-life of 22 h, a clearance of 27.4 mL/h/kg, and a distribution volume of 0.94 L/kg. At 2-100 µg-eq/g, the concentrations of 14CWLBU2 appear high enough in the tissues to account for inhibition of microbial growth.


Author(s):  
Haragouri Mishra ◽  
Amulyaratna Behera ◽  
Sidhartha Sankar Kar ◽  
Gurudutta Pattnaik ◽  
Satish Kanhar ◽  
...  

The rapid development of drug resistant micro-organisms is a challenge to the mankind. Nano formulated compounds have proved to be effective strategy to combat bacterial drug resistance. Currently nanoparticulate systems such as nanoantibiotics are getting major attention due to their low inherent toxicity, biodegradability, bioincompatibility and tuneable mechanical characteristics. Nano formulated antibiotics are generally obtained by emulsification and gelification techniques. The effective uses of polymers in encapsulation of antibiotics show enhancement of the efficacy of antibiotics. Combined with techniques like diffraction laser spectroscopy (DLS), electron microscopy (EM) and atomic force microscopy (AFM), morphological research of nanoformulated antibiotics are conducted. The detailed study of the polymers used in the preparation of antibiotics nanoparticles as well as their impact on interactions is done by bio-analytical techniques. Antibiotics attached to nanoparticles can avoid the action of enzymes produced by drug resistant bacteria.  Nano antibiotics show higher efficacy and bioavailability so a lot of new formulations using nano methods can be developed with the help of bioanalytical techniques. The development as well as the estimation of antibiotics prepared as nano-formulations as per the recent advanced techniques is illustrated in this review.


Author(s):  
Rongxing Chen ◽  
Huarui Xue ◽  
Yazhou Xu ◽  
Tianwei Ma ◽  
Yuan Liu ◽  
...  

Background: Methicillin-resistant S. aureus (MRSA) has already tormented humanity and the environment for a long time and is responsible for many difficult-to-treat infections. Unfortunately, there are limited therapeutic options, and MRSA isolates with complete resistance to vancomycin, the first-line drug for the treatment of MRSA infections, have already emerged in recent years. Moxifloxacin retained activity against mutant bacterial strains with various levels of fluoroquinolones resistance and had a lower potential to select for resistant mutants. Isatin is a versatile structure, and its derivatives are potent inhibitors of many enzymes and receptors. The fluoroquinolone-isatin derivatives demonstrated excellent antibacterial activity against both drug-sensitive and drug-resistant organisms. The structure-activity relationship elucidated that incorporation of 1,2,3-triazole moiety into the C-7 position of fluoroquinolone skeleton was favorable to the antibacterial activity. Accordingly, fluoroquinolone derivatives with isatin and 1,2,3-triazole fragments at the side chain on the C-7 position are promising candidates to fight against drug-resistant bacteria. Objective: To explore more active moxifloxacin derivatives to fight against MRSA and enrich the structure-activity relationships. Methods: The synthesized moxifloxacin derivatives 7a-i and 14a-f were evaluated for their antibacterial activity against a panel of MRSA strains by means of standard two-fold serial dilution method. Results: The majority of the synthesized moxifloxacin derivatives were active against most of the tested MRSA strains with MIC values in a range of 1 to 64 μg/mL. The mechanistic investigations revealed that topoisomerase IV was one of the targets for antibacterial activity. Conclusion: These derivatives are useful scaffolds for the development of novel topoisomerase IV inhibitors.


Sign in / Sign up

Export Citation Format

Share Document