scholarly journals Skin microbiome dysbiosis in leprosy cases

Author(s):  
Vannia C. Teng ◽  
Prima K. Esti

<p>The human skin possesses a microenvironment conducive to the growth of the skin microbiome, which plays in many physiological functions in cutaneous immunity homeostasis and maturation. The microbiome composition depends on many variables, such as endogenous (host condition) or exogenous (environmental) factors and topographic location. Host-skin microbes’ interaction can be mutualism or pathogenicity. Dysbiosis or alteration in skin microbiota is associated with various dermatological diseases, including leprosy. Dysbiosis is driven by the alteration of the microbial communities themselves or due to the intrinsic features of the host. Leprosy is a chronic granulomatous disease caused by <em>Mycobacterium leprae</em> targeting the nerves and skin, leading to loss of sensation on the skin, with or without dermatologic lesions, and correlated with long term consequences, such as deformities or disability. Microvascular dysfunction and significant alterations in capillary structure due to invasion of <em>M. leprae</em> lead to altered hydration levels of the skin caused by disruption of blood flow; which changes the resident microbial community structure. The skin microbiome composition differences in leprosy patient’s skin lesions were observed; skin microbial diversity in the leprosy patients was lower than in healthy individuals. The diversity reduction was observed in freshly diagnosis leprosy patients, those at various stages of MDT, and post-MDT; indicated that both the interaction between skin microbial community and<strong> </strong><em>M. leprae</em> or the ongoing therapeutic regimen impacted the skin microbiome variation. </p><p> </p>

2020 ◽  
Author(s):  
Hendra Gunawan ◽  
Pati Aji Achdiat ◽  
Oki Suwarsa ◽  
Dhaifina Alkatirie ◽  
Endang Sutedja ◽  
...  

Abstract BackgroundSkin microbiome is quiet diverse. There are several factors influencing the skin microbiome, such as skin diseases. However, the effects of leprosy on the skin microbiome remain unclear and there are only a few studies about skin microbiome on leprosy. The aim of this study was to investigate the alpha diversity of skin microbiome on lesional site of multibacillary (MB) leprosy patients who visited the top referral hospital in West Java Indonesia. Here in this study we characterize the skin microbiome in leprosy patient in compared to healthy individual by using next generation 16S rRNA sequencing. A total 18 skin swab samples were collected from 18 samples (14 leprosy patients, 4 healthy individuals).ResultsTaxonomic analysis of leprous skin lesions revealed main five phyla: Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, and Cyanobacteria. Proteobacteria and Firmicutes were overrepresented in leprosy patients, while Actinobacteria, Bacteroidetes, and Cyanobacteria were diminished in leprosy patients compared to healthy individuals. The main five genera in leprous skin lesions were Staphylococcus, Acinetobacter, Corynebacterium, Micrococcus, and Propionibacterium. Staphylococcus, Acinetobacter, and Micrococcus were enriched in leprosy patients, while Corynebacterium and Propionibacterium which have a protective role in normal skin, were diminished in leprosy patients when compared with healthy individuals. Twenty-five species were found in leprous skin lesions that were not typical in human skin and considered as potentially pathogenic. The alpha diversity analysis showed that leprous skin lesions is less diverse than that of the healthy skin microbiome.ConclusionAs a conclusion, the skin microbiome on lesional site of leprosy patient show alteration and less diverse compare to healthy individuals. This suggest that leprosy can affects skin microbiome profile or otherwise.


2018 ◽  
Vol 115 (25) ◽  
pp. E5786-E5795 ◽  
Author(s):  
Ashley A. Ross ◽  
Kirsten M. Müller ◽  
J. Scott Weese ◽  
Josh D. Neufeld

Skin is the largest organ of the body and represents the primary physical barrier between mammals and their external environment, yet the factors that govern skin microbial community composition among mammals are poorly understood. The objective of this research was to generate a skin microbiota baseline for members of the class Mammalia, testing the effects of host species, geographic location, body region, and biological sex. Skin from the back, torso, and inner thighs of 177 nonhuman mammals was sampled, representing individuals from 38 species and 10 mammalian orders. Animals were sampled from farms, zoos, households, and the wild. The DNA extracts from all skin swabs were amplified by PCR and sequenced, targeting the V3-V4 regions of bacterial and archaeal 16S rRNA genes. Previously published skin microbiome data from 20 human participants, sampled and sequenced using an identical protocol to the nonhuman mammals, were included to make this a comprehensive analysis. Human skin microbial communities were distinct and significantly less diverse than all other sampled mammalian orders. The factor most strongly associated with microbial community data for all samples was whether the host was a human. Within nonhuman samples, host taxonomic order was the most significant factor influencing skin microbiota, followed by the geographic location of the habitat. By comparing the congruence between host phylogeny and microbial community dendrograms, we observed that Artiodactyla (even-toed ungulates) and Perissodactyla (odd-toed ungulates) had significant congruence, providing evidence of phylosymbiosis between skin microbial communities and their hosts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nitin Bayal ◽  
Sunil Nagpal ◽  
Mohammed Monzoorul Haque ◽  
Milind S. Patole ◽  
Yogesh Shouche ◽  
...  

AbstractAlthough skin is the primary affected organ in Leprosy, the role of the skin microbiome in its pathogenesis is not well understood. Recent reports have shown that skin of leprosy patients (LP) harbours perturbed microbiota which grants inflammation and disease progression. Herein, we present the results of nested Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) which was initially performed for investigating the diversity of bacterial communities from lesional skin (LS) and non-lesional skin (NLS) sites of LP (n = 11). Further, we performed comprehensive analysis of 16S rRNA profiles corresponding to skin samples from participants (n = 90) located in two geographical locations i.e. Hyderabad and Miraj in India. The genus Staphylococcus was observed to be one of the representative bacteria characterizing healthy controls (HC; n = 30), which in contrast was underrepresented in skin microbiota of LP. Taxa affiliated to phyla Firmicutes and Proteobacteria were found to be signatures of HC and LS, respectively. Observed diversity level changes, shifts in core microbiota, and community network structure support the evident dysbiosis in normal skin microbiota due to leprosy. Insights obtained indicate the need for exploring skin microbiota modulation as a potential therapeutic option for leprosy.


2019 ◽  
Vol 7 (9) ◽  
pp. 301 ◽  
Author(s):  
Enea Gino Di Domenico ◽  
Ilaria Cavallo ◽  
Bruno Capitanio ◽  
Fiorentina Ascenzioni ◽  
Fulvia Pimpinelli ◽  
...  

Biofilm is the dominant mode of growth of the skin microbiota, which promotes adhesion and persistence in the cutaneous microenvironment, thus contributing to the epidermal barrier function and local immune modulation. In turn, the local immune microenvironment plays a part in shaping the skin microbiota composition. Atopic dermatitis (AD) is an immune disorder characterized by a marked dysbiosis, with a sharp decline of microbial diversity. During AD flares biofilm-growing Staphylococcus aureus emerges as the major colonizer in the skin lesions, in strict association with disease severity. The chronic production of inflammatory cytokines in the skin of AD individuals concurs at supporting S. aureus biofilm overgrowth at the expense of other microbial commensals, subverting the composition of the healthy skin microbiome. The close relationship between the host and microbial biofilm resident in the skin has profound implications on human health, making skin microbiota an attractive target for the therapeutic management of different skin disorders.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Emma Barnard ◽  
Baochen Shi ◽  
Dezhi Kang ◽  
Noah Craft ◽  
Huiying Li

Abstract Studies have emphasized the importance of disease-associated microorganisms in perturbed communities, however, the protective roles of commensals are largely under recognized and poorly understood. Using acne as a model disease, we investigated the determinants of the overall virulence property of the skin microbiota when disease- and health-associated organisms coexist in the community. By ultra-deep metagenomic shotgun sequencing, we revealed higher relative abundances of propionibacteria and Propionibacterium acnes phage in healthy skin. In acne patients, the microbiome composition at the species level and at P. acnes strain level was more diverse than in healthy individuals, with enriched virulence-associated factors and reduced abundance of metabolic synthesis genes. Based on the abundance profiles of the metagenomic elements, we constructed a quantitative prediction model, which classified the clinical states of the host skin with high accuracy in both our study cohort (85%) and an independent sample set (86%). Our results suggest that the balance between metagenomic elements, not the mere presence of disease-associated strains, shapes the overall virulence property of the skin microbiota. This study provides new insights into the microbial mechanism of acne pathogenesis and suggests probiotic and phage therapies as potential acne treatments to modulate the skin microbiota and to maintain skin health.


Cosmetics ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 34
Author(s):  
Tiziana Ciardiello ◽  
Daniela Pinto ◽  
Laura Marotta ◽  
Giammaria Giuliani ◽  
Fabio Rinaldi

The skin microbiome is in a very close mutualistic relationship with skin cells, influencing their physiology and immunology and participating in many dermatological conditions. Today, there is much interest in cosmetic ingredients that may promote a healthy microbiome, especially postbiotics, mainly derived from fermented products. In the present work, we studied the effects on skin microbiota of new patented natural oils obtained by unique fermentation technology in vivo. Three fermented oils were evaluated: F-Shiunko (FS), F-Artemisia® (FA) and F-Glycyrrhiza® (FG). The active components were included as single active component or in combination (FSAG) in an emulsion system. A total of 20 healthy women were recruited, and skin microbiota from cheek were analyzed by mean of swab sampling at T0 and T1 (after 4 weeks of a one-day treatment). 16S sequencing revealed that the treatment with fermented oils improved microbiome composition and alpha-diversity. It was shown that higher biodiversity reflects in a healthier microbial ecosystem since microbial diversity decreases in the presence of a disease or due to aging. The treatment also resulted in a more “beneficial” and “younger” microbial community since a significant decrease in Proteobacteria and the increase in Staphylococcus were reported after the treatment with fermented oils.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexander Mahnert ◽  
Cyprien Verseux ◽  
Petra Schwendner ◽  
Kaisa Koskinen ◽  
Christina Kumpitsch ◽  
...  

Abstract Background Human health is closely interconnected with its microbiome. Resilient microbiomes in, on, and around the human body will be key for safe and successful long-term space travel. However, longitudinal dynamics of microbiomes inside confined built environments are still poorly understood. Herein, we used the Hawaii Space Exploration Analog and Simulation IV (HI-SEAS IV) mission, a 1 year-long isolation study, to investigate microbial transfer between crew and habitat, in order to understand adverse developments which may occur in a future outpost on the Moon or Mars. Results Longitudinal 16S rRNA gene profiles, as well as quantitative observations, revealed significant differences in microbial diversity, abundance, and composition between samples of the built environment and its crew. The microbiome composition and diversity associated with abiotic surfaces was found to be rather stable, whereas the microbial skin profiles of individual crew members were highly dynamic, resulting in an increased microbiome diversity at the end of the isolation period. The skin microbiome dynamics were especially pronounced by a regular transfer of the indicator species Methanobrevibacter between crew members within the first 200 days. Quantitative information was used to track the propagation of antimicrobial resistance in the habitat. Together with functional and phenotypic predictions, quantitative and qualitative data supported the observation of a delayed longitudinal microbial homogenization between crew and habitat surfaces which was mainly caused by a malfunctioning sanitary facility. Conclusions This study highlights main routes of microbial transfer, interaction of the crew, and origins of microbial dynamics in an isolated environment. We identify key targets of microbial monitoring, and emphasize the need for defined baselines of microbiome diversity and abundance on surfaces and crew skin. Targeted manipulation to counteract adverse developments of the microbiome could be a highly important strategy to ensure safety during future space endeavors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aaro Salosensaari ◽  
Ville Laitinen ◽  
Aki S. Havulinna ◽  
Guillaume Meric ◽  
Susan Cheng ◽  
...  

AbstractThe collection of fecal material and developments in sequencing technologies have enabled standardised and non-invasive gut microbiome profiling. Microbiome composition from several large cohorts have been cross-sectionally linked to various lifestyle factors and diseases. In spite of these advances, prospective associations between microbiome composition and health have remained uncharacterised due to the lack of sufficiently large and representative population cohorts with comprehensive follow-up data. Here, we analyse the long-term association between gut microbiome variation and mortality in a well-phenotyped and representative population cohort from Finland (n = 7211). We report robust taxonomic and functional microbiome signatures related to the Enterobacteriaceae family that are associated with mortality risk during a 15-year follow-up. Our results extend previous cross-sectional studies, and help to establish the basis for examining long-term associations between human gut microbiome composition, incident outcomes, and general health status.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 445
Author(s):  
Jessica Cuartero ◽  
Onurcan Özbolat ◽  
Virginia Sánchez-Navarro ◽  
Marcos Egea-Cortines ◽  
Raúl Zornoza ◽  
...  

Long-term organic farming aims to reduce synthetic fertilizer and pesticide use in order to sustainably produce and improve soil quality. To do this, there is a need for more information about the soil microbial community, which plays a key role in a sustainable agriculture. In this paper, we assessed the long-term effects of two organic and one conventional cropping systems on the soil microbial community structure using high-throughput sequencing analysis, as well as the link between these communities and the changes in the soil properties and crop yield. The results showed that the crop yield was similar among the three cropping systems. The microbial community changed according to cropping system. Organic cultivation with manure compost and compost tea (Org_C) showed a change in the bacterial community associated with an improved soil carbon and nutrient content. A linear discriminant analysis effect size showed different bacteria and fungi as key microorganisms for each of the three different cropping systems, for conventional systems (Conv), different microorganisms such as Nesterenkonia, Galbibacter, Gramella, Limnobacter, Pseudoalteromonas, Pantoe, and Sporobolomyces were associated with pesticides, while for Org_C and organic cultivation with manure (Org_M), other types of microorganisms were associated with organic amendments with different functions, which, in some cases, reduce soil borne pathogens. However, further investigations such as functional approaches or network analyses are need to better understand the mechanisms behind this behavior.


Sign in / Sign up

Export Citation Format

Share Document