scholarly journals A literature review on different types of surface treatment in implants

2021 ◽  
Vol 7 (2) ◽  
pp. 64-67
Author(s):  
Monika Sehrawat ◽  
Lalita Sheoran ◽  
S Bharathesh ◽  
Nenavata Ravi ◽  
Laxmikant Nayak ◽  
...  

In a present scenario, dental implants are becoming very popular in day to day practice and is one of the most promising treatment modality in the procedure of replacement of missing tooth or teeth in the oral cavity. There are various factors over which the success of implant therapy depends, such as local as well as systemic factors, like age, bone availability in terms of height and width, bone density, any local infection present, systemic disease, and some other factors like implant design, implant surface, which plays an important role in the process of osseointegration.

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 270
Author(s):  
Ji-Hyun Kim ◽  
Young-Jun Lim ◽  
Bongju Kim ◽  
Jungwon Lee

The aim of the present study was to evaluate correlations between bone density and implant primary stability, considering various determinants such as age, gender, and geometry of implants (design, diameter). Bone density of edentulous posterior maxillae was assessed by computed tomography (CT)-derived Hounsfield units, and implant primary stability values were measured with insertion torque and resonance frequency analysis (RFA). A total of 60 implants in 30 partially edentulous patients were evaluated in the posterior maxilla with two different types of dental implants. The bone density evaluated by CT-derived Hounsfield units showed a significant correlation with primary stability parameters. The bone quality was more influenced by gender rather than age, and the type of implant was insignificant when determining primary stability. Such results imply that primary stability parameters can be used for objective assessment of bone quality, allowing surgical modifications especially in sites suspected of poor bone quality.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mehran Ashrafi ◽  
Farzan Ghalichi ◽  
Behnam Mirzakouchaki ◽  
Manuel Doblare

AbstractBone remodeling identifies the process of permanent bone change with new bone formation and old bone resorption. Understanding this process is essential in many applications, such as optimizing the treatment of diseases like osteoporosis, maintaining bone density in long-term periods of disuse, or assessing the long-term evolution of the bone surrounding prostheses after implantation. A particular case of study is the bone remodeling process after dental implantation. Despite the overall success of this type of implants, the increasing life expectancy in developed countries has boosted the demand for dental implants in patients with osteoporosis. Although several studies demonstrate a high success rate of dental implants in osteoporotic patients, it is also known that the healing time and the failure rate increase, necessitating the adoption of pharmacological measures to improve bone quality in those patients. However, the general efficacy of these antiresorptive drugs for osteoporotic patients is still controversial, requiring more experimental and clinical studies. In this work, we investigate the effect of different doses of several drugs, used nowadays in osteoporotic patients, on the evolution of bone density after dental implantation. With this aim, we use a pharmacokinetic–pharmacodynamic (PK/PD) mathematical model that includes the effect of antiresorptive drugs on the RANK/RANK-L/OPG pathway, as well as the mechano-chemical coupling with external mechanical loads. This mechano-PK/PD model is then used to analyze the evolution of bone in normal and osteoporotic mandibles after dental implantation with different drug dosages. We show that using antiresorptive agents such as bisphosphonates or denosumab increases bone density and the associated mechanical properties, but at the same time, it also increases bone brittleness. We conclude that, despite the many limitations of these very complex models, the one presented here is capable of predicting qualitatively the evolution of some of the main biological and chemical variables associated with the process of bone remodeling in patients receiving drugs for osteoporosis, so it could be used to optimize dental implant design and coating for osteoporotic patients, as well as the drug dosage protocol for patient-specific treatments.


2013 ◽  
Vol 39 (3) ◽  
pp. 302-307 ◽  
Author(s):  
V. Manju ◽  
T. Sreelal

In an implant-supported overdenture, the optimal stress distribution on the implants and least denture displacement is desirable. This study compares the load transfer characteristics to the implant and the movement of overdenture among 3 different types of attachments (ball-ring, bar-clip, and magnetic). Stress on the implant surface was measured using the strain-gauge technique and denture displacement by dial gauge. The ball/O-ring produces the optimal stress on the implant body and promotes denture stability.


2021 ◽  
Vol 7 (3) ◽  
pp. 131-136
Author(s):  
Poonam Prakash ◽  
Ambika Narayanan

Achieving primary stability in dental implants is crucial factor for accomplishing successful osteointegration with bone. Micro-motions higher than the threshold of 50 to 100 μm can lead to formation of fibrous tissue at the bone-to-implant interface. Therefore, osteointegration may be vitiated due to insufficient primary stability. Osseointegration is defined as a direct and functional connection between the implant biomaterial and the surrounding bone tissue. Osseointegration development requires an initial rigid implant fixation into the bone at the time of surgery and a secondary stage of new bone apposition directly onto the implant surface. Dental implants function to transfer the load to the surrounding biological tissues. Due to the absence of a periodontal ligament, its firm anchorage to bone, various forces acting on it and the presence of prosthetic components, they share a complex biomechanical relationship. The longevity of these osseointegrated implants depend on optimizing these complex interactions. Hence, the knowledge of forces acting on implant, design considerations of implant and bone mechanics is essential to fabricate an optimized implant supported prosthesis.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5834
Author(s):  
Britt Wildemann ◽  
Klaus D. Jandt

Implants and materials are indispensable in trauma and orthopedic surgery. The continuous improvements of implant design have resulted in an optimized mechanical function that supports tissue healing and restoration of function. One of the still unsolved problems with using implants and materials is infection. Trauma and material implantation change the local inflammatory situation and enable bacterial survival and material colonization. The main pathogen in orthopedic infections is Staphylococcus aureus. The research efforts to optimize antimicrobial surfaces and to develop new anti-infective strategies are enormous. This mini-review focuses on the publications from 2021 with the keywords S. aureus AND (surface modification OR drug delivery) AND (orthopedics OR trauma) AND (implants OR nails OR devices). The PubMed search yielded 16 original publications and two reviews. The original papers reported the development and testing of anti-infective surfaces and materials: five studies described an implant surface modification, three developed an implant coating for local antibiotic release, the combination of both is reported in three papers, while five publications are on antibacterial materials but not metallic implants. One review is a systematic review on the prevention of stainless-steel implant-associated infections, the other addressed the possibilities of mixed oxide nanotubes. The complexity of the approaches differs and six of them showed efficacy in animal studies.


2012 ◽  
Vol 86 ◽  
pp. 40-50
Author(s):  
Sirinrath Sirivisoot ◽  
Thomas J. Webster

Although improvements have been made in implant design to increase bone formation and promote successful osseointegration using nanotechnology, the clinical diagnosis of early bone growth surrounding implants remains problematic. The development of a device allowing doctors to monitor the healing cascade and to diagnose potential infection or inflammation is necessary. Biological detection can be examined by the electrochemical analysis of electron transfer (or redox) reactions of extracellular matrix proteins involved in bone deposition and resorption. The use of nanomaterials as signal amplifiers in electrochemical sensors has greatly improved the sensitivity of detection. Nanotechnology-enabled electrochemical sensors that can be placed on the implant surface itself show promise as self-diagnosing devices in situ, possibly to detect new bone growth surrounding the implant and other cellular events to ensure implant success.


2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Charles Darko-Takyi ◽  
Naimah Ebrahim Khan ◽  
Urvashni Nirghin

There are conflicting and confusing ideas in literature on the different types of accommodative and vergence anomalies as different authors turn to classify them differently. This paper sought to review literature on the different classifications and types of nonstrabismic binocular vision anomalies and harmonize these classifications. Search engines, namely Google scholar, Medline, Cinahl and Francis databases, were used to review literature on the classification of accommodative and vergence dysfunctions using keywords like <em>binocular vision dysfunctions</em>, <em>classification of nonstrabismic binocular vision disorders or anomalies</em>, <em>accommodative disorders/anomalies classification</em> and <em>vergence disorders/anomalies classifications</em>, and included works that described these anomalies. Nonstrabismic binocular vision anomalies are classified as accommodative and vergence anomalies. There are three different major types of accommodative anomalies, namely accommodative insufficiency, accommodative infacility (accommodative inertia), and accommodative excess (accommodative spasm), and seven different types of vergence anomalies (convergence insufficiency, convergence excess, divergence insufficiency, divergence excess, basic esophoria, basic exophoria and fusional vergence dysfunctions), which are functional in origin. Functionally, there is a commonly reported interaction between accommodative and convergence insufficiency referred to as pseudoconvergence insufficiency. Accommodative paralysis (subtype of accommodative insufficiency) and vergence anomalies – <em>i.e.</em>, convergence paralysis, convergence spasm and divergence paralysis – are non-functional in origin with underlying systemic disease etiologies. Systemic convergence insufficiency, associated with subnormal accommodation, is a non-functional interaction between the accommodative and convergence insufficiency. The classification of nonstrabismic binocular vision anomalies is based on the description of the clinical signs and the underlying etiology either functional or non-functional in origin. Proper diagnosis and management involves investigation of the underlying etiology in addition to the battery of binocular vision test procedures.


2020 ◽  
Vol 30 (3) ◽  
pp. 277-306 ◽  
Author(s):  
Justine Brigitte Virlée ◽  
Wafa Hammedi ◽  
Allard C.R. van Riel

PurposePatients, when using healthcare services, (co)create value by integrating their own resources with those of a range of stakeholders. These resource integration activities, however, require different types of skills and effort from the patients, and different types of interactions with stakeholders, while also having different effects on patients' well-being. The purpose of the present study is to develop a better understanding of why some patients are better able or willing to perform resource integration activities that impact their well-being. To reach this objective, barriers and facilitators of these activities in their interactions with various stakeholders were identified.Design/methodology/approachThe study uses a multiple case study design. Individual patients having received a lung transplant, together with their entourage (family, medical professionals, other patients) each represent a case. In-depth interviews were conducted with the patients and with various categories of stakeholders in their service delivery network who were relevant to their experience and with whom they integrated their resources.FindingsThe study identifies three levels on which barriers and facilitators of the resource integration process occur: the individual, relational and systemic level. Factors on these levels affect different aspects of the process.Originality/valueThis study takes a systems perspective and investigates how various systemic factors and stakeholders conduce or inhibit healthcare service users to perform resource integration activities, especially focusing on those activities that strongly affect their well-being.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2398 ◽  
Author(s):  
Christian Makary ◽  
Abdallah Menhall ◽  
Carole Zammarie ◽  
Teresa Lombardi ◽  
Seung Yeup Lee ◽  
...  

Background: Macro- and micro-geometry are among the factors influencing implant stability and potentially determining loading protocol. The purpose of this study was to test a protocol for early loading by controlling implant stability with the selection of fixtures with different thread depth according to the bone density of the implant site. Materials and Methods: Patients needing implant therapy for fixed prosthetic rehabilitation were treated by inserting fixtures with four different thread diameters, selected based on clinical assessment of bone quality at placement (D1, D2, D3, and D4, according to Misch classification). Final insertion torque (IT) and implant stability quotient (ISQ) were recorded at baseline and ISQ measurements repeated after one, two, three, and four weeks. At the three-week measurement (four weeks after implant replacement), implants with ISQ > 70 Ncm were functionally loaded with provisional restorations. Marginal bone level was radiographically measured 12 months after implant insertion. Results: Fourteen patients were treated with the insertion of forty implants: Among them, 39 implants showing ISQ > 70 after 3 weeks of healing were loaded with provisional restoration. Mean IT value was 82.3 ± 33.2 Ncm and varied between the four different types of bone (107.2 ± 35.6 Ncm, 74.7 ± 14.0 Ncm, 76.5 ± 31.1 Ncm, and 55.2 ± 22.6 Ncm in D1, D2, D3, and D4 bone, respectively). Results showed significant differences except between D2 and D3 bone types. Mean ISQ at baseline was 79.3 ± 4.3 and values in D1, D2, D3, and D4 bone were 81.9 ± 2.0, 81.1 ± 1.0, 78.3 ± 3.7, and 73.2 ± 4.9, respectively. Results showed significant differences except between D1 and D2 bone types. IT and ISQ showed a significant positive correlation when analyzing the entire sample (p = 0.0002) and D4 bone type (p = 0.0008). The correlation between IT and ISQ was not significant when considering D1, D2, and D3 types (p = 0.28; p = 0.31; p = 0.16, respectively). ISQ values showed a slight drop at three weeks for D1, D2, and D3 bone while remaining almost unchanged in D4 bone. At 12-month follow-up, all implants (39 early loading, 1 conventional loading) had satisfactory function, showing an average marginal bone loss of 0.12 ± 0.12 mm, when compared to baseline levels. Conclusion: Matching implant macro-geometry to bone density can lead to adequate implant stability both in hard and soft bone. High primary stability and limited implant stability loss during the first month of healing could allow the application of early loading protocols with predictable clinical outcomes.


Sign in / Sign up

Export Citation Format

Share Document