scholarly journals WELL LOG DATA INTERPRETATION IN PALEOGEOGRAPHIC RECONSTRUCTIONS (IN THE CASE OF THE BATHONIAN-UPPER JURASSIC DEPOSITS OF SOUTH OF WEST SIBERIA)

Author(s):  
P. A. Yan ◽  
E. M. Khabarov

According to the results of a comprehensive sedimentological study of the core and well log data, the dissection of the bat-upper Jurassic sediments of the South of the West Siberian oil and gas basin was carried out. Quasi-isochronous marked levels are identified. They are represented by transgressive surfaces, maximum flooding surfaces and extended carbonaceous layers. They are the basis of the performed correlation. A number of characteristic lithological-facies sequences diagnosed by well log data was established.

1973 ◽  
Vol 13 (1) ◽  
pp. 49 ◽  
Author(s):  
Keith Crank

The Barrow Island oil field, which was discovered by the drilling of Barrow 1 in 1964, was declared commercial in 1966. Since then 520 wells have been drilled in the development of this field which has resulted in 309 Windalia Sand oil producers (from about 2200 feet), eight Muderong Greensand oil wells (2800 feet), five Neocomian/Upper Jurassic gas and oil producers (6200 to 6700 feet), eight Barrow Group water source wells and 157 water injection wells.Production averages 41,200 barrels of oil per day, and 98% of this comes from the shallow Windalia Sand Member of Cretaceous (Aptian to Albian) age. These reserves are contained in a broad north-plunging nose truncated to the south by a major down-to-the-south fault. The anticline is thought to have been formed initially from a basement uplift during Late Triassic to Early Jurassic time. Subsequent periods of deposition, uplift and erosion have continued into the Tertiary and modified the structure to its present form. The known sedimentary section on Barrow Island ranges from Late Jurassic to Miocene.The Neocomian/Jurassic accumulations are small and irregular and are not thought to be commercial in themselves. The Muderong Greensand pool is also a limited, low permeability reservoir. Migration of hydrocarbons is thought to have occurred mainly in the Tertiary as major arching did not take place until very late in the Cretaceous or early in the Palaeocene.The Windalia Sand reservoir is a high porosity, low permeability sand which is found only on Barrow Island. One of the most unusual features of this reservoir is the presence of a perched gas cap. Apparently the entire sand was originally saturated with oil, and gas subsequently moved upstructure from the north, displacing it. This movement was probably obstructed by randomly-located permeability barriers.


1968 ◽  
Vol 31 (3) ◽  
pp. 534-554 ◽  
Author(s):  
C. E. Bosworth

It is not too much to describe the Ṣaffārids of S‚stān as an archetypal military dynasty. In the later years of the third/ninth century, their empire covered the greater part of the non-Arab eastern Islamic world. In the west, Ya'qūb. al-Laith's army was only halted at Dair al-'Āqūl, 50 miles from Baghdad; in the north, Ya'qūb and his brother 'Arm campaigned in the Caspian coastlands against the local 'Alids, and 'Amr made serious attempts to extend his power into Khwārazm and Transoxania; in the east, the two brothers pushed forward the frontiers of the Dār al-Islām into the pagan borderlands of what are now eastern Afghanistan and the North-West Frontier region of West Pakistan; and in the south, Ṣaffārid authority was acknowledged even across the persion Gulf in ‘Umān. This impressive achievement was the work of two soldiers of genius, Ya'qūub and 'Amr, and lasted for little more than a quarter of a century. It began to crumble when in 287/900 the Sāmānid Amīr Ismā'īl b. Aḥmad defeated arid captured ‘Amr b. al-Laith, and 11 years later, the core of the empire, Sīstān itself, was in Sāmānid hands. Yet such was the effect in Sīstān of the Ṣaffārid brothers’ achievement, and the stimulus to local pride and feeling which resulted from it, that the Ṣaffārids returned to power there in a very short time. For several more centuries they endured and survived successive waves of invaders of Sīstān—the Ghaznavids, the Seljūqs, the Mongols—and persisted down to the establishment of the Ṣafavid state in Persia.


2019 ◽  
Vol 2 (1) ◽  
pp. 25-31
Author(s):  
Lyudmila Vakulenko ◽  
Aleksey Popov ◽  
Sergey Rodyakin ◽  
Evgeniy Khabarov ◽  
Peter Yan

The features of the petrographic composition of the bath-upper Jurassic silt-sand rocks exposed by wells in the South of the West Siberian oil and gas basin are considered. The study is focused on the parameters that had a significant influence on the reservoir properties of rocks: granulometric and mineral-petrographic composition of the clastic part of rocks, cement content, structure and composition. Some conclusions are drawn on the spatial distribution of rocks of different composition within the subisochronous sedimentary complexes. It is assumed that significant variations in their composition are caused by a complex combination of varying degrees of interdependent factors: influence of local and regional sources of clastic material, peculiarities of redistribution of material during its transportation and sedimentation, and post-sedimentation changes. Most variable values of reservoir properties, with a recorded maximum parameters of porosity and permeability are obtained for the rocks of Medium-Upper Oxford complex on Verkhnetarskaya, Dedovskaya, Basinskaya, Veselovskaya, to a lesser extent, Kasmanskaya, Vostochnaya and Tai-Dasskaya drilling sites.


2021 ◽  
Vol 133 (2) ◽  
pp. 27-30
Author(s):  
D. A. Kobylinskiy ◽  

The work is devoted to the development of geochemical criteria for determining the nature of saturation for deep-adsorbed gases in the core. As the object of investigation used the core material selected in the fields in the Nadym-Pyrskoy oil and gas field. In each sample, 72 components were determined, namely, hydrocarbons of different material groups: normal, branched, polycyclic, and aromatic compounds from butane to dodecane. With respect to the quantitative distribution and correlation among the components, qualitative geochemical indicators of sediment productivity have been developed. The saturation character established by the criteria of deep-adsorbed gases was confirmed by the test results. In this regard, this research method significantly increases the effectiveness of diagnostics of prospective deposits, the application of which is relevant in the territory of the West Siberian oil and gas basin, especially when studying deep-submerged deposits of complex geological structure.


2003 ◽  
Vol 1 ◽  
pp. 367-402 ◽  
Author(s):  
Peter N. Johannessen

Paralic and shallow marine sandstones were deposited in the Danish Central Graben during Late Jurassic rifting when half-grabens were developed and the overall eustatic sea level rose. During the Kimmeridgian, an extensive plateau area consisting of the Heno Plateau and the Gertrud Plateau was situated between two highs, the Mandal High to the north, and the combined Inge and Mads Highs to the west. These highs were land areas situated on either side of the plateaus and supplied sand to the Gertrud and Heno Plateaus. Two graben areas, the Feda and Tail End Grabens, flanked the plateau area to the west and east, respectively. The regressive–transgressive succession consists of intensely bioturbated shoreface sandstones, 25–75 m thick. Two widespread unconformities (SB1, SB2) are recognised on the plateaus, forming the base of sequence 1 and sequence 2, respectively. These unconformities were created by a fall in relative sea level during which rivers may have eroded older shoreface sands and transported sediment across the Heno and Gertrud Plateaus, resulting in the accumulation of shoreface sandstones farther out in the Feda and Tail End Grabens, on the south-east Heno Plateau and in the Salt Dome Province. During subsequent transgression, fluvial sediments were reworked by high-energy shoreface processes on the Heno and Gertrud Plateaus, leaving only a lag of granules and pebbles on the marine transgressive surfaces of erosion (MTSE1, MTSE2). The sequence boundary SB1 can be traced to the south-east Heno Plateau and the Salt Dome Province, where it is marked by sharp-based shoreface sandstones. During low sea level, erosion occurred in the southern part of the Feda Graben, which formed part of the Gertrud and Heno Plateaus, and sedimentation occurred in the Norwegian part of the Feda Graben farther to the north. During subsequent transgression, the southern part of the Feda Graben began to subside, and a succession of backstepping back-barrier and shoreface sediments, 90 m thick, was deposited. In the deep Tail End and Feda Grabens and the Salt Dome Province, sequence boundary SB2 is developed as a conformity, indicating that there was not a significant fall in relative sea level in these grabens, probably as a result of high subsidence rates. Backstepping lower shoreface sandstones overlie SB2 and show a gradual fining-upwards to offshore claystones that are referred to the Farsund Formation. On the plateaus, backstepping shoreface sandstones of sequence 2 are abruptly overlain by offshore claystones, indicating a sudden deepening and associated cessation of sand supply, probably caused by drowning of the sediment source areas on the Mandal, Inge and Mads Highs. During the Volgian, the Gertrud Plateau began to subside and became a graben. During the Late Kimmeridgian – Ryazanian, a long-term relative sea-level rise resulted in deposition of a thick succession of offshore claystones forming highstand and transgressive systems tracts on the Heno Plateau, and in the Gertrud, Feda and Tail End Grabens.


2021 ◽  
Vol 54 (2E) ◽  
pp. 186-197
Author(s):  
Maan Al-Majid

The Early Miocene Euphrates Formation is characterized by its oil importance in the Qayyarah oil field and its neighboring fields. This study relied on the core and log data analyses of two wells in the Qayyarah oil field. According to the cross-plot’s information, the Euphrates Formation is mainly composed of dolomite with varying proportions of limestone and shale. Various measurements to calculate the porosity, permeability, and water saturation on the core samples were made at different depths in the two studied wells Qy-54 and Qy-55. A relationship between water saturation and capillary pressure has been plotted for some core samples to predict sites of normal compaction in the formation. The line regression for this relationship was considered as a function of the ratio of large voids to the total volume of voids in the sample. The coefficient of determination parameter was used in estimating the amount of homogeneity in the sizes of the voids, as it was observed to increase significantly at the sites of shale. After dividing the formation into several zones, the well log data were analyzed to predict the locations of oil presence in both wells. The significance of the negative secondary porosity in detecting the hydrocarbon sites in the Euphrates Formation was deduced by its correspondence with the large increase in the true resistivity values in both wells. More than 90% of the formation parts represent reservoir rocks in both wells, but only about 75% of them are oil reservoirs in the well Qy-54 and nearly 50% of them are oil reservoirs in the well Qy-55.


1969 ◽  
Vol 9 (1) ◽  
pp. 60
Author(s):  
R. Smith ◽  
P. Kamerling

Geophysical exploration carried out in the Great Australian Bight since 1966, combined with geological fieldwork in the adjacent land areas, has made it possible to outline the broad geological framework of the area.The "basement" consists of two major units, an offshore extension of the locally metamorphic Cambrian Kanmantoo Group in the south-east and the extension of the West Australian Archaean shield in the north-west. The boundary is thought to follow a trend extending westerly from the Cygnet-Snelling fault zone on Kangaroo Island.In two areas the basement has been downfaulted, thus creating depositional areas for thick sequences of sediments, namely the Elliston trough to the west of Eyre Peninsula and the Duntroon basin, south of Eyre Peninsula and west of Kangaroo Island.The geological setting of the Duntroon basin appears to be comparable with the Otway basin and a Jurassic- Cretaceous age is assumed for the folded sequence of sediments overlying the basement and underlying the Tertiary with angular unconformity. The basin was possibly partially and temporarily closed to the south and open to marine influences from the west.In the Elliston trough the lower part of the section which has low to medium velocity seismic character, is probably Mesozoic, as is evidenced by the Upper Jurassic encountered in its onshore extension. Proterozoic-Cambrian sediments may overlie the basement in the eastern part of the trough. Deformation of the Mesozoic is limited to the mouth of the trough where there is indication of a base- Tertiary unconformity. This trough was probably also open to marine influences to the west.Along the continental margin between the basins and also south of the Eucla basin a thin Mesozoic section, conformably underlying the Tertiary, is probably present, gradually thickening towards the continental slope.In the onshore area Tertiary sedimentation started with local deposition of clastics during the Middle Eocene, which also may have been the case off the Eucla basin, in the Elliston trough and in the Duntroon basin. Carbonate sedimentation took place from the Middle-Upper Eocene onwards, to reach its widest areal extent during the Lower Miocene. A hiatus during the Oligocene may have occurred in the western part of the Bight as is the case in the Eucla basin.Only weak deformation of the Tertiary in the offshore area has been observed. This generally occurs over Mesozoic structures in the Duntroon basin and as draping over topographic basement highs at the mouth of the Elliston trough.No significant hydrocarbon indications are known from the surrounding land areas, but the well-documented bitumen strandings along the coast point to offshore seepages indicating generation of hydrocarbons in the general area.At this stage prospects must be regarded as speculative.although a folded probable Mesozoic sequence forms an objective in the Duntroon basin while prospective Mesozoic-Tertiary section appears to be present in the Elliston trough, where structural evaluation is still at a relatively early stage.


Sign in / Sign up

Export Citation Format

Share Document