scholarly journals Acidizing Process in Acid Fracturing

2016 ◽  
Vol 11 (2) ◽  
pp. 159
Author(s):  
B.E. Bekbauov

The theory and numerical implementation of acid-fracturing model that solves the 2D fracture geometry leakoff, acid transport and acid-rock reaction simultaneously will be presented. The mathematical model proovides a penetration distance for acid fracturing. Due to limitation of analytical solution, a finite-difference method was developed for modelling the fracture acidizing process. Example was solved for HCl reaction in limestone and dolomite fractures, and the results are presented in graphical form. The acid-transport model integrates a number of features which were not accounted for an earlier design models: comprehensive study of hydrodynamic process; acidizing controlled by mass transfer, rate of reaction, and leakoff. Coupling with reservoir forecasting models gives the ability to optimize the job.

2020 ◽  
Author(s):  
Rencheng Dong ◽  
Mary F. Wheeler ◽  
Kang Ma ◽  
Hang Su

2021 ◽  
Author(s):  
Rencheng Dong ◽  
Mary F. Wheeler ◽  
Hang Su ◽  
Kang Ma

Abstract Acid fracturing technique is widely applied to stimulate the productivity of carbonate reservoirs. The acid-fracture conductivity is created by non-uniform acid etching on fracture surfaces. Heterogeneous mineral distribution of carbonate reservoirs can lead to non-uniform acid etching during acid fracturing treatments. In addition, the non-uniform acid etching can be enhanced by the viscous fingering mechanism. For low-perm carbonate reservoirs, by multi-stage alternating injection of a low-viscosity acid and a high-viscosity polymer pad fluid during acid fracturing, the acid tends to form viscous fingers and etch fracture surfaces non-uniformly. To accurately predict the acid-fracture conductivity, this paper developed a 3D acid fracturing model to compute the rough acid fracture geometry induced by multi-stage alternating injection of pad and acid fluids. Based on the developed numerical simulator, we investigated the effects of viscous fingering, perforation design and stage period on the acid etching process. Compared with single-stage acid injection, multi-stage alternating injection of pad and acid fluids leads to narrower and longer acid-etched channels.


2014 ◽  
Vol 1042 ◽  
pp. 44-51
Author(s):  
Jia Nye Mou ◽  
Mao Tang Yao ◽  
Ke Xiang Zheng

Acid fracture conductivity is a key parameter in acid fracturing designs and production performance prediction. It depends on the fracture surface etching pattern, rock mechanical properties, and closure stress. The fracture surfaces undergo creep deformation under closure stress during production. Preservation of fracture conductivity becomes a challenge at elevated closure stress. In this paper, we investigated acid fracture conductivity behavior of Tahe deep carbonate reservoir with high closure stress and high temperature. A series of acid fracture conductivity experiment was conducted in a laboratory facility designed to perform acid fracture conductivity. Gelled acid and cross linked acid with different acid-rock contact times were tested for analyzing the effect of acid type and acid-rock contact time on the resulting conductivity. Closure stress up to 100MPa was tested to verify the feasibility of acid fracturing for elevated closure stress. Long-term conductivity up to 7-day was tested to determine the capability of conductivity retaining after creep deformation. Composite conductivity of acid fracture with prop pant was also carried out. The study shows that the fracture retained enough conductivity even under effective closure stress of 70MPa. The gelled acid has a much higher conductivity than the cross linked acid for the same contact time. For the gelled acid, contact time above 60-minute does not lead to conductivity increase. Acid fracture with prop pant has a lower conductivity at low closure stress and a higher conductivity at high closure stress than the acid fracture, which shows composite conductivity is a feasible way to raise conductivity at high closure stress. The long-term conductivity tests show that the acid fracture conductivity decreases fast within the first 48-hour and then levels off. The conductivity keeps stable after 120-hour. An acid fracture conductivity correlation was also developed for this reservoir.


1971 ◽  
Vol 11 (04) ◽  
pp. 406-418 ◽  
Author(s):  
D.E. Nierode ◽  
B.B. Williams

Abstract A kinetic model for the reaction of Hydrochloric acid with limestone bas been determined. Reaction order and rate constant for this model were calculated from experiments where acid reacted with a single calcium carbonate plate. Experiments were performed so that acid flow past the plate and mass transfer rate to the rock surface could be calculated theoretically. The resulting model, therefore, accurately represents the acid reaction process at the rock surface and is independent of mass transfer rate. Combination of this model with existing theory allows prediction of acid reaction during acid fracturing operations. A model for acid reaction in wormholes created during matrix acidization treatments is presented along with data for reaction of hydrochloric, formic and acetic acids in a wormhole. Factors limiting stimulation in acid fracturing or matrix acidizing treatments are then discussed. Introduction To predict the stimulation ratio resulting from acid fracturing or matrix acidizing treatments it is necessary to know the rate of acid reaction under field conditions. In acid fracturing treatments, for example, reaction occurs as acid flows through a narrow fracture. Reaction in a matrix treatment occurs during flow through wormholes (channels of roughly circular cross-section) created by acid reaction. In both treatments, a large amount of mixing occurs during flow through the fracture or channel as a result of tortuosity and wall roughness. Reaction rate can be obtained from experiments, or predicted by theoretical calculations that accurately model field conditions. In general a theoretical procedure is preferred since it can be used without recourse to laboratory testing. Acid-reaction-rate data have been reported from a number of experiments intended to simulate acid reaction in field treatments. Tests most often used are:the static reaction rate test, in which a cube of limestone is contacted with unstirred acid at a known ratio of rock surface area to acid volume;flow experiments, where acid is forced to flow between parallel plates of limestone; anddynamic tests, whine limestone specimens are rotated through an agitated acid solution. In general, these tests model some aspects of the reaction process, such as area to volume ratio, or acid flow velocity, but do not accurately model all field conditions. To obtain an accurate mathematical model for field treatments, assuming fracture or wormhole geometry is known, it is necessary to characterize acid reaction kinetics at the limestone surface, rate of acid transfer to the surface, and rate of fluid loss from the fracture or wormhole. (Each of these processes is shown schematically in Fig. 1.) processes is shown schematically in Fig. 1.) Reaction kinetics are independent of the geometry in which reaction occurs; therefore, once kinetics have been determined for a given acid-rock system field treatments can be simulated by prediction of the rate of acid transfer to the surface and fluid loss to the formation. Unfortunately, experiments reported to dare do not allow determination of a kinetic model. SPEJ P. 406


2014 ◽  
Vol 1004-1005 ◽  
pp. 639-647 ◽  
Author(s):  
Jian Ye Mou ◽  
Ke Xiang Zheng ◽  
Hua Jian Chen ◽  
Han Zhang

In acid fracturing, the fast acid-rock reaction limits live acid penetration distance. Many kinds of acids were developed to reduce the acid-rock reaction rate. Acid effective consumption time in the fracure is a key factor for accurate prediction of live acid penetraiton distance in acid fracturing designs. In this paper, we developed a new method for measuring acid effective consumption time in the fracture and did experimental result matching to obtain effective acid diffusion coefficient with a acid flow-reaction model. Firstly, we designed a apparatus and corresponding experimental procedure. Then used the new method to measure the effective consumption time for gel acid and crosslinked acid. The new method uses reservoir core samples and is convenient to heat all the fluid as well as pipe lines to the reservoir tempeature, which reflects in-situ conditions more reliably. In the experiment, the rock mass loss with time was measured, based on which the acid consumption time is predicted. Under the experiment conditoins, the gel acid has a effecive consumption time about 17-minute, and the crosslinked acid has about 22-minutes at 130°. Finally, a model of acid flow-reaction in a fracture was used to match experimental results to obtained the acid diffution coeffecient. The results from this study help improve accuracy in acid fracturing designs.


2021 ◽  
Vol 10 (2) ◽  
pp. 285-291
Author(s):  
P. T. Manjunatha ◽  
Ali J. Chamkha ◽  
R. J. Punith Gowda ◽  
R. Naveen Kumar ◽  
B. C. Prasannakumara ◽  
...  

The applications of fluid flow with Newtonian heating effect include conjugate heat conveyance around fins, petroleum industry, and heat exchangers designing. Motivated from these applications, an attempt has been made to analyze the stream of viscous nanomaterial subjected to a curved stretching sheet. Also, heat and mass transport mechanism due to a chemical reaction, Brownian and thermophoresis motion are discussed. The equations of the mathematical model are formulated by considering the Newtonian heating and Stefan blowing conditions at the boundary. These modelled equations are then changed to a system of nonlinear equation involving ordinary derivatives of a function by means of suitable similarity transformations. Further, shooting technique with Runge-Kutta-Fehlberg-45 process is utilized to solve the reduced equations. Outcomes disclose that, the gain in Stefan blowing parameter escalates the liquid velocity. The intensification in chemical reaction rate parameter deteriorates the concentration gradient. The rise in Schmidt number and thermophoresis parameter drops the mass transfer rate. The increased values of Newtonian heating parameter with respect to thermophoresis parameter decays the heat transport rate.


SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Jiahui You ◽  
Kyung Jae Lee

Summary Hydrochloric acid (HCl) is commonly used in acid fracturing. Given that the interaction between acid and rock affects multiphase flow behaviors, it is important to thoroughly understand the relevant phenomena. The Darcy-Brinkman-Stokes (DBS) method is most effective in describing the matrix-fracture system among the proposed models. This study aims to analyze the impact of acid-rock interaction on multiphase flow behavior by developing a pore-scale numerical model applying the DBS method. The new pore-scale model is developed based on OpenFOAM, an open-source platform for the prototyping of diverse flow mechanisms. The developed simulation model describes the fully coupled mass balance equation and the chemical reaction of carbonate acidizing in an advection-diffusion regime. The volume of fluid (VOF) method is used to track the liquid- and gas-phase interface on fixed Eulerian grids. Here, the penalization method is applied to describe the wettability condition on immersed boundaries. The equations of saturation, concentration, and diffusion are solved successively, and the momentum equation is solved by pressure implicit with splitting of operators method. The simulation results of the developed numerical model have been validated with experimental results. Various injection velocities and the second Damkohler numbers have been examined to investigate their impacts on the CO2 bubble generation, evolving porosity, and rock surface area. We categorized the evolving carbon dioxide (CO2) distribution into three patterns in terms of the Damkohler number and the Péclet number. We also simulated a geometry model with multiple grains and a Darcy-scale model using the input parameters found from the pore-scale simulations. The newly developed pore-scale model provides the fundamental knowledge of physical and chemical phenomena of acid-rock interaction and their impact on acid transport. The modeling results describing mineral acidization will help us implement a practical fracturing project.


2021 ◽  
Author(s):  
Alexey Yudin ◽  
Abdul Muqtadir Khan ◽  
Rostislav Romanovskii ◽  
Alexey Alekseev ◽  
Dmitry Abdrazakov

Abstract The oilfield industry is rapidly changing towards reduced CO2 emissions and sustainability. Although hydrocarbons are expected to remain the leading source for global energy, costs to produce them may become prohibitive unless new breakthrough in technology is established. Fortunately, the digital revolution in the IT industry continues at an accelerating pace. A digital stimulation approach for tight formations is presented, using the achievements of one industry to solve the challenges of another. The fracture hydrodynamics and in-situ kinetics model is incorporated in the advanced simulator together with the detailed multiphysics models based on acid systems digitization, including rheology and fluid- carbonate interactions data obtained from the laboratory experiments. Digitization of fluid-rock interaction and fluid leakoff was performed using a coreflooding setup that allowed pumping concentrated acids in core samples at high-pressure/high-temperature (HP/HT) conditions. Varying the testing parameters across a broad range allowed refining the model coefficients in the simulator to obtain high accuracy in the predicted results. The digital slot concept was used to validate physical models in an iterative experimental approach. The software proved efficient at providing validation of multiphysics models used together with advanced slurry transport in the simulator. The fine computational grid allowed accurate predictions of the fracture geometry, etched width, and channel conductivity, resulting in realistic well productivity anticipations. Since multiple fluid systems of the acid stimulation portfolio were digitized and incorporated into the simulator, it was possible to optimize complex acid fracturing designs in the real field operations that included retarded single-phase and multiphase acid systems, self-diverting viscoelastic acids, and fiber- based diverting systems. Several case studies from multiple areas and reservoirs from Caspian and Middle East areas have demonstrated extremely positive oil and gas production results with reduced acid volumes with the digital stimulation workflow compared to conventionally stimulated offset wells. The digital stimulation workflow brings a new approach to acid fracturing optimization based on an integrated cycle in which high-resolution data from several sources are processed by powerful computing capacities. Starting from digitizing acid reactions with the core samples, through digitized rheology and particle transport in multiphysics models, an advanced numerical simulator tailors an optimum design from a number of acid system options, pumping rates, additive concentrations, and stage volumes to achieve best geometry of etched channels inside a fracture.


Sign in / Sign up

Export Citation Format

Share Document