scholarly journals The Peranan Pergerakan Air Dalam-Tanah dalam Menurunkan Aliran Permukaan

2021 ◽  
Vol 26 (2) ◽  
pp. 292-300
Author(s):  
Enni Dwi Wahjunie ◽  
Dwi Putro Tejo Baskoro ◽  
Suria Darma Tarigan

The main cause of flooding and erosion that creates critical land in various regions in Indonesia is surface runoff. The surface runoff will occur if rainfall exceeds the capacity of soil water absorption (infiltration capacity). The soil management of each land use could improve the infiltration capacity. The water movement both on the surface and in the soil determines the water infiltration. This study predicts surface runoff based on the infiltration rate of various land uses and rainfall in the Ciliwung Watershed. A series of studies were performed in the upstream and middle areas of the watershed. Observations of soil properties, water movement, and rainfall were carried out in various dry land uses. The results showed that the soil's physical properties mostly determine the constant infiltration rate, which affected the water movement in the ground. The initial water content, the degree of saturation of the initial moisture content, and the soil's physical properties determine the time of constant infiltration rate. The value of constant rate infiltration and the time of its achievement define the amount of surface runoff that occurs. Keywords: hydraulic conductivity, run off, soil management, time achievement of infiltration capacity

Author(s):  
Tomáš Mašíček ◽  
F. Toman ◽  
M. Vičanová

The aim of this paper was to compare the rate of infiltration and cumulative infiltration in permanent grassland (PG) and in arable land over the course of the 2011 growing season. The measurement of water infiltration into soil was conducted via ponded infiltration method based on the use of two concentric cylinders in field conditions. Kostiakov equations were applied to evaluate the ponded infiltration. Based on field measurements, the dependence of infiltration rate (v) on time (t) was determined and also the dependence of cumulative infiltration (i) on time (t). In order to determine physical properties of soil and carry out a grain size analysis, intact soil samples of plough layer from the depths of 10, 20 and 30 cm were collected using Kopecký cylinders along with individual infiltration attempt in each measurement carried out on experimental plots. In order to assess the infiltration capacity of soil on experimental plots, four measurements were conducted, each with three repetitions. Infiltration attempts were held on May 12, June 28, August 24 and October 6, 2011. On average, a faster water infiltration into soil and a higher cumulative infiltration during the 2011 growing period were detected in arable land. The soil’s initial water content has proven to be the crucial factor affecting the rate of water infiltration into soil in case of PG; in case of arable land, it was bulk density indicating the soil’s compaction. The PG showed a more balanced course of infiltration rate and cumulative infiltration values during the growing season. Arable land is characterized by a greater dispersion of measured values between individual measurement dates.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 180
Author(s):  
Laura Ávila-Dávila ◽  
Manuel Soler-Méndez ◽  
Carlos Francisco Bautista-Capetillo ◽  
Julián González-Trinidad ◽  
Hugo Enrique Júnez-Ferreira ◽  
...  

Infiltration estimation is made by tests such as concentric cylinders, which are prone to errors, such as the lateral movement under the ring. Several possibilities have been developed over the last decades to compensate these errors, which are based on physical, electronic, and mathematical principles. In this research, two approaches are proposed to measure the water infiltration rate in a silty loam soil by means of the mass values of a lysimeter weighing under rainfall conditions and different moisture contents. Based on the fact that with the lysimeter it is possible to determine acting soil flows very precisely, then with the help of mass conservation and assuming a downward vertical movement, 12 rain events were analyzed. In addition, it was possible to monitor the behavior of soil moisture and to establish the content at field capacity from the values of the weighing lysimeter, from which both approach are based. The infiltration rate of these events showed a variable rate at the beginning of the rainfall until reaching a maximum, to descend to a stable or basic rate. This basic infiltration rate was 1.49 ± 0.36 mm/h, and this is because soils with fine textures have reported low infiltration capacity. Four empirical or semi-empirical models of infiltration were calibrated with the values obtained with our approaches, showing a better fit with the Horton’s model.


2021 ◽  
Vol 930 (1) ◽  
pp. 012054
Author(s):  
I K Hidayati ◽  
Suhardjono ◽  
D Harisuseno ◽  
A Suharyanto

Abstract Ponding time is the period from the beginning of rainfall/infiltration until the occurrence of ponding. This paper aims to determine the infiltration rate and ponding time on different land uses, such as open fields, residential, agriculture, and vegetation. This research was conducted in one of the watersheds in the Brantas River Basin, namely the Lesti River Basin, which is administratively included in the Malang Regency, East Java. The Lesti River is one of the tributaries of the Brantas River, which originates around Mount Semeru, a very intensive area for planting rice, sugar cane, and coffee. Infiltration data were collected at 35 points using a double-ring infiltrometer spread across the Lesti watershed with Andosol, Mediterranean, and Regosol soil types. At the same time, ponding time was obtained from infiltration measurements in the field using the flooding method. The physical properties of the soils were tested in the laboratory to obtain water content, porosity, and bulk density values. This study resulted in the infiltration rate and ponding time for each land use and shows how the physical properties of the soil affect the ponding time.


1996 ◽  
Vol 25 (3) ◽  
pp. 151-156 ◽  
Author(s):  
Charles L.A. Asadu

An comparison of soilmanagement techniques In the different irrigation zones of Lower Anambra Irrigation Project (LAIP) In eastern Nigeria showed that heavy use of machinery led to Increases In bulk density and decreases In field water Infiltration rate. The relative proportion of clay In the irrigated fields Increased as a result of Irrigation, suggesting that mobilized clay from uncemented main and distribution canals Is carried and deposited In the rice fields. Both Irrigation and the use of machinery have had substantial negative effects on soli nutrient levels, and there is a danger of this process continuing. Soli management for sustainable production in the area should centre on applying organic matter in combination with inorganic fertilizers, monitoring the soli properties on yearly basis before the cropping season for fertilizer and lime recommendations, and varying the depth of tillage to Increase or maintain the effective soli depth.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 503 ◽  
Author(s):  
Manuel Lucas-Borja ◽  
Demetrio Zema ◽  
Pedro Plaza-Álvarez ◽  
Vesna Zupanc ◽  
Jantiene Baartman ◽  
...  

A detailed knowledge of soil water repellency (SWR) and water infiltration capacity of soils under different land uses is of fundamental importance in Mediterranean areas, since these areas are prone to soil degradation risks (e.g., erosion, runoff of polluting compounds) as a response to different hydrological processes. The present study evaluates the effects of land uses on SWR and soil hydraulic conductivity (SHC) by direct measurements at the plot scale in three areas representing (1) intensive agricultural use, (2) abandoned farmland, and (3) a forest ecosystem in Southern Spain under Mediterranean climatic conditions. The physico-chemical properties and water content of the experimental soils were also measured. Significant SWR and SHC differences were found among the analyzed land uses. Forest soils showed high SWR and low SHC, while the reverse effects (that is, low SWR and high SHC) were detected in soils subjected to intensive agriculture. Organic matter and bulk density were important soil properties influencing SWR and SHC. The study, demonstrating how land uses can have important effects on the hydrological characteristics of soils, give land managers insights into the choice of the most suitable land use planning strategies in view of facing the high runoff and erosion rates typical of the Mediterranean areas.


Irriga ◽  
2005 ◽  
Vol 10 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Antonio Angelotti Neto ◽  
Edemo João Fernandes

AVALIAÇÃO DA TAXA DE INFILTRAÇÃO DE ÁGUA EM UM LATOSSOLO VERMELHO SUBMETIDO A DOIS SISTEMAS DE MANEJO*  Antonio Angelotti Netto1; Edemo João Fernandes21SEA, Escola de Engenharia de São Carlos,Universidade de São Paulo e Embrapa Instrumentação Agropecuária,, São Carlos, SP, [email protected] de Engenharia Rural, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP  1 RESUMO A infiltração de água no solo é um dos processos mais importantes do ciclo hidrológico, uma vez que a partir desse parâmetro pode-se determinar o escorrimento superficial e estimar o armazenamento de água no solo. O manejo do solo é um importante fator que influencia a infiltração de água. O solo manejado erroneamente pode ocasionar perdas de solo, lixiviação de pesticidas e fertilizantes, causando efeitos nefastos à produção agrícola e ao ambiente. Diante deste contexto, objetivou-se determinar a velocidade de infiltração em um Latossolo Vermelho eutroférrico ocorrente na UNESP, Jaboticabal, SP, submetido aos sistemas de manejo convencional e pousio. As medidas foram realizadas com anéis concêntricos, nos intervalos de tempo: 5, 10, 20, 30 e 60 minutos. Verificou-se que o manejo em pousio a que foi submetido o solo, não foi o suficiente para lhe proporcionar velocidades de infiltração maiores do que no solo manejado convencionalmente. UNITERMOS: infiltração acumulada, manejo de solo, pousio  ANGELOTTI NETTO, A.; FERNANDES, E. J. EVALUATION OF WATER INFILTRATION RATE IN A RED LATOSSOL SUBMITTED TO TWO MANAGEMENT SYSTEMS  2 ABSTRACT Water infiltration in the soil is one of the most important processes of the hydrological cycle, as this parameter may be used to determine water runoff and estimate water storage in the soil. Soil management is an important factor that influences water infiltration. Erroneous soil management may cause soil losses, pesticide and fertilizer leaching, and disastrous effects to the agricultural production and the environment. Considering this, it was decided to determine the infiltration rate of a Red Latosol (Rhodic Eutrudox) at UNESP, Jaboticabal, and SP, BRAZIL, submitted to a conventional management system and to a non-cultivated one. These measurements were made using concentric rings, at time intervals of 5, 10, 20, 30 and 60 minutes. It was verified that the non-cultivated period to which the soil was submitted was not sufficient to provide a greater infiltration rate than that one achieved by conventional soil management. KEYWORDS: accumulated infiltration, soil management, non-cultivated soil 


Author(s):  
B. F. Dada ◽  
B. S. Ewulo ◽  
M. A. Awodun ◽  
T. D. Adebisi ◽  
S. O. Ajayi

Soil physical properties influence soil water infiltration rate, plant rooting depth, amount of available water, air and nutrients which are of utmost importance in agricultural production and, hence there is need to describe in-situ spatial organization and physical properties of soil in Akure. Sixteen profile pits were dug. The soils were characterized and described on the field and samples collected for textural analysis. The area occurs on level plain with little slope gradient, the surface horizons (A1 and A­2) were weak medium crumby to moderate medium crumby structures while the subsurface horizons (Bt1 and Bt2­) showed moderate medium blocky structure. The soils are generally deep and well drained at the top soil with coarse texture; the subsoils are characterized by prominent presence of mottles, which suggest that the subsoils are poorly drained. The distribution of clay content increased with soil depth for all pedons. Most of the Pedons had reddish gray colour (2.5YR 4/1) and dull reddish brown 2.5YR 4/3 at the surface horizons (A1 and A2), over brownish colour (7.5YR 4/4) and dull reddish brown (5YR 4/4) sub soil. The particle size distribution revealed that sand dominated the particle size fraction of the soil in all the profiles, which could be managed with appropriate organic manure.


Irriga ◽  
2010 ◽  
Vol 15 (4) ◽  
pp. 344-352 ◽  
Author(s):  
Alexandre Barcellos Dalri ◽  
Glauco Eduardo Pereira Cortez ◽  
Luis Guilherme Senarese Riul ◽  
Jairo Augusto Campos Araújo ◽  
Raimundo Leite Cruz

Este trabalho teve como objetivo estudar o efeito da aplicação de diferentes lâminas de vinhaça na infiltração de água no solo e verificar a adequação dos modelos de Horton e Kostiakov-Lewis na estimativa da taxa de infiltração. Os tratamentos corresponderam à aplicação de cinco doses de vinhaça (0, 200, 250, 300 e 350 m3.ha-1). A aplicação de vinhaça propiciou uma redução da taxa de infiltração básica do respectivo solo em estudo, causando efeito negativo para essa característica, pois, eleva o risco de erosão do solo e majora a possibilidade do escoamento superficial. O modelo de Horton propiciou o melhor ajuste sobre os dados observados, e o modelo de Kostiakov-Lewis superestimou os valores da taxa de infiltração.   UNITERMOS: vinhaça, infiltração, solo.     DALRI, A.B.; CORTEZ, G.E.P.; RIUL, L.G.S.; ARAÚJO, J.A.C.; CRUZ, R.L. VINASSE APPLICATION INFLUENCE ON INFILTRATION CAPACITY OF SANDY LOAM SOIL     2 ABSTRACT   The objective of this study was to analyze effects in different depth in soil water infiltration and to verify the Horton and Kostiakov-Lewis models adequacy in infiltration rate estimate. The treatments were five doses of vinasse (0, 200, 250, 300 and 350 m³.ha¹). The vinasse application reduced the soil erosion risk increasing the possibility of runoff. The Horton model had the best adjustment on the observed data, and the Kostiakov-Lewis model overestimated the infiltration rate values.   KEYWORDS: vinasse, infiltration, soil.


2017 ◽  
Vol 3 (1) ◽  
pp. 86
Author(s):  
Joslaine Minosso ◽  
Valdemir Antoneli ◽  
Andreza Rocha de Freitas

A infiltração consiste na entrada de água na camada superficial do solo. Este processo é influenciado por diversos fatores tais como: características da precipitação, condições físicas do solo e tipo de uso do solo. Os diferentes tipos de uso do solo em uma bacia hidrográfica indicam variações nas condições físicas do solo que podem alterar o processo de infiltração da água. Neste contento, este artigo teve como objetivo mensurar a infiltração de água no solo em uma bacia hidrográfica no município de Irati na Região Sudeste do Paraná com diferentes tipos de uso do solo. Realizamos duas campanhas de coleta de dados, uma no verão e outra no inverno. Para mensurar a infiltração da água no solo utilizamos um infiltrômetro de anéis concêntricos. Ao término do monitoramento concluímos que a taxa de infiltração é maior no período de inverno em todos os usos da terra. A agricultura indicou maior variação na infiltração entro os dois períodos de monitoramento devido ao manejo do solo. A área urbana indicou menor variação na infiltração, por não haver mudanças significativas no solo ao longo do ano. Abstract:The infiltration consists of the input of water into the soil. This process is influenced by several factors such as: characteristics of rainfall, soil physical conditions and land use type. The different types of land use in a watershed show variations in soil physical conditions that can alter the process of water infiltration. Therefore, this article has as objective to measure the infiltration of water in the soil in a watershed in the Municipality of Irati in the Southeast Region of Paraná with different types of land use. We carried out two campaigns of data collection, one in the summer and other in the winter. We used a concentric ring infiltrometer to measure the infiltration of water in soils. At the end of the monitoring we conclude that the rate of infiltration is higher in the winter period in all land uses. Agriculture indicated greater variation in infiltration between the two monitoring periods due to soil management. The urban area indicated less variation in the infiltration, as there were no significant changes in the soil during the year.Keywords: Infiltration rate; Land Use; Rural Area; Urban Area; Seasonality. 


2020 ◽  
Author(s):  
Naoto Sato ◽  
Yuichi Maruo ◽  
Kento Nogawa ◽  
Natsumi Naganuma ◽  
Kosuke Noborio

<p>The Global Exploration Roadmap targets the realization of Mars manned exploration by the 2030s. It is necessary to understand water movement in porous media under microgravity to establish a plant growth system for crop production for astronauts to produce food in outer space. In previous researches, a decrease in infiltration rate was reported for coarse (1.5 mm diameter) glass beads porous media. On the other hand,  in the case of fine (0.4 mm diameter) glass beads porous media, the amount of reduction in the infiltration rate was small. We wanted knowledge of water movement under partial gravity conditions. We conducted water infiltration experiments under microgravity, 1/6G, and 1/3G conditions made by parabolic flights. The 0.2, 0.4, and 0.6 mm glass beads were used as porous media. The effects of particle size and partial gravity on water infiltration in porous media will be discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document