scholarly journals Bifurcation processes in pulse voltage regulator

2021 ◽  
Vol 24 (2) ◽  
pp. 109-112
Author(s):  
Danil L. Myasnikov ◽  
Yulia V. Sokolova

Analysis of a pulse voltage regulator from the point of view of transition to an unstable position and possible bifurcation states. Calculation of the stability condition when changing the parameters of the system. Obtaining the pulse voltage regulator stability surface. This voltage stabilizer can have the basic intrinsic parameters of the system, such as, for example, the load resistance, the value of which can change over time according to unknown laws. In the course of the work, the stability limits for static and dynamic bifurcations were obtained with respect to many parameters of the system, including with respect to the value of the load conductivity. To obtain numerical results, a system with the following main parameters was used: U = 4,1 V, d0 = 0,4, C = 600 F, L = 2 mH, f1 = 0,8 Ohm, G = 0,5 V1, RL = 2 Ohm.

2010 ◽  
Vol 31 (2) ◽  
pp. 68-73 ◽  
Author(s):  
María José Contreras ◽  
Víctor J. Rubio ◽  
Daniel Peña ◽  
José Santacreu

Individual differences in performance when solving spatial tasks can be partly explained by differences in the strategies used. Two main difficulties arise when studying such strategies: the identification of the strategy itself and the stability of the strategy over time. In the present study strategies were separated into three categories: segmented (analytic), holistic-feedback dependent, and holistic-planned, according to the procedure described by Peña, Contreras, Shih, and Santacreu (2008) . A group of individuals were evaluated twice on a 1-year test-retest basis. During the 1-year interval between tests, the participants were not able to prepare for the specific test used in this study or similar ones. It was found that 60% of the individuals kept the same strategy throughout the tests. When strategy changes did occur, they were usually due to a better strategy. These results prove the robustness of using strategy-based procedures for studying individual differences in spatial tasks.


2013 ◽  
Vol 44 (6) ◽  
pp. 380-389 ◽  
Author(s):  
Sabine Förderer ◽  
Christian Unkelbach

Evaluative conditioning (EC) refers to valence changes in neutral stimuli (CSs) through repeated pairing with liked or disliked stimuli (USs). The present study examined the stability of EC effects in the course of 1 week. We investigated how this stability depends on memory for US valence and US identity. We also investigated whether CSs evaluations occurring immediately after conditioning (i.e., evaluative consolidation) are necessary for stable EC effects. Participants showed stable EC effects on direct and indirect measures, independent of evaluations immediately after conditioning. EC effects depended on memory for US valence but not for US identity. And although memory decreased significantly over time, EC effects remained stable. These data suggest that evaluative consolidation is not necessary, and that conditioned preferences and attitudes might persist even when people do not remember the concrete source anymore.


Author(s):  
Rebekah J. Nixon ◽  
Sascha H. Kranen ◽  
Anni Vanhatalo ◽  
Andrew M. Jones

AbstractThe metabolic boundary separating the heavy-intensity and severe-intensity exercise domains is of scientific and practical interest but there is controversy concerning whether the maximal lactate steady state (MLSS) or critical power (synonymous with critical speed, CS) better represents this boundary. We measured the running speeds at MLSS and CS and investigated their ability to discriminate speeds at which $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 was stable over time from speeds at which a steady-state $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 could not be established. Ten well-trained male distance runners completed 9–12 constant-speed treadmill tests, including 3–5 runs of up to 30-min duration for the assessment of MLSS and at least 4 runs performed to the limit of tolerance for assessment of CS. The running speeds at CS and MLSS were significantly different (16.4 ± 1.3 vs. 15.2 ± 0.9 km/h, respectively; P < 0.001). Blood lactate concentration was higher and increased with time at a speed 0.5 km/h higher than MLSS compared to MLSS (P < 0.01); however, pulmonary $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 did not change significantly between 10 and 30 min at either MLSS or MLSS + 0.5 km/h. In contrast, $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 increased significantly over time and reached $$\dot{V}{\text{O}}_{2\,\,\max }$$ V ˙ O 2 max at end-exercise at a speed ~ 0.4 km/h above CS (P < 0.05) but remained stable at a speed ~ 0.5 km/h below CS. The stability of $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 at a speed exceeding MLSS suggests that MLSS underestimates the maximal metabolic steady state. These results indicate that CS more closely represents the maximal metabolic steady state when the latter is appropriately defined according to the ability to stabilise pulmonary $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 .


1998 ◽  
Vol 1 (1) ◽  
pp. 23-39
Author(s):  
Carter J. Kerk ◽  
Don B. Chaffin ◽  
W. Monroe Keyserling

The stability constraints of a two-dimensional static human force exertion capability model (2DHFEC) were evaluated with subjects of varying anthropometry and strength capabilities performing manual exertions. The biomechanical model comprehensively estimated human force exertion capability under sagittally symmetric static conditions using constraints from three classes: stability, joint muscle strength, and coefficient of friction. Experimental results showed the concept of stability must be considered with joint muscle strength capability and coefficient of friction in predicting hand force exertion capability. Information was gained concerning foot modeling parameters as they affect whole-body stability. Findings indicated that stability limits should be placed approximately 37 % the ankle joint center to the posterior-most point of the foot and 130 % the distance from the ankle joint center to the maximal medial protuberance (the ball of the foot). 2DHFEC provided improvements over existing models, especially where horizontal push/pull forces create balance concerns.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1877
Author(s):  
Kai-Hung Yang ◽  
Gabriella Lindberg ◽  
Bram Soliman ◽  
Khoon Lim ◽  
Tim Woodfield ◽  
...  

Recent advances highlight the potential of photopolymerizable allylated gelatin (GelAGE) as a versatile hydrogel with highly tailorable properties. It is, however, unknown how different photoinitiating system affects the stability, gelation kinetics and curing depth of GelAGE. In this study, sol fraction, mass swelling ratio, mechanical properties, rheological properties, and curing depth were evaluated as a function of time with three photo-initiating systems: Irgacure 2959 (Ig2959; 320–500 nm), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP; 320–500 nm), and ruthenium/sodium persulfate (Ru/SPS; 400–500 nm). Results demonstrated that GelAGE precursory solutions mixed with either Ig2959 or LAP remained stable over time while the Ru/SPS system enabled the onset of controllable redox polymerization without irradiation during pre-incubation. Photo-polymerization using the Ru/SPS system was significantly faster (<5 s) compared to both Ig2959 (70 s) and LAP (50 s). Plus, The Ru/SPS system was capable of polymerizing a thick construct (8.88 ± 0.94 mm), while Ig2959 (1.62 ± 0.49 mm) initiated hydrogels displayed poor penetration depth with LAP (7.38 ± 2.13 mm) in between. These results thus support the use of the visible light based Ru/SPS photo-initiator for constructs requiring rapid gelation and a good curing depth while Ig2959 or LAP can be applied for photo-polymerization of GelAGE materials requiring long-term incubation prior to application if UV is not a concern.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1434 ◽  
Author(s):  
Wonhee Kim ◽  
Sangmin Suh

For several decades, disturbance observers (DOs) have been widely utilized to enhance tracking performance by reducing external disturbances in different industrial applications. However, although a DO is a verified control structure, a conventional DO does not guarantee stability. This paper proposes a stability-guaranteed design method, while maintaining the DO structure. The proposed design method uses a linear matrix inequality (LMI)-based H∞ control because the LMI-based control guarantees the stability of closed loop systems. However, applying the DO design to the LMI framework is not trivial because there are two control targets, whereas the standard LMI stabilizes a single control target. In this study, the problem is first resolved by building a single fictitious model because the two models are serial and can be considered as a single model from the Q-filter point of view. Using the proposed design framework, all-stabilizing Q filters are calculated. In addition, for the stability and robustness of the DO, two metrics are proposed to quantify the stability and robustness and combined into a single unified index to satisfy both metrics. Based on an application example, it is verified that the proposed method is effective, with a performance improvement of 10.8%.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


Inorganics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 20
Author(s):  
Antonio A. García-Valdivia ◽  
Estitxu Echenique-Errandonea ◽  
Gloria B. Ramírez-Rodríguez ◽  
José M. Delgado-López ◽  
Belén Fernández ◽  
...  

Two new coordination polymers (CPs) based on Zn(II) and Cd(II) and 1H-indazole-6-carboxylic acid (H2L) of general formulae [Zn(L)(H2O)]n (1) and [Cd2(HL)4]n (2) have been synthesized and fully characterized by elemental analyses, Fourier transformed infrared spectroscopy and single crystal X-ray diffraction. The results indicate that compound 1 possesses double chains in its structure whereas 2 exhibits a 3D network. The intermolecular interactions, including hydrogen bonds, C–H···π and π···π stacking interactions, stabilize both crystal structures. Photoluminescence (PL) properties have shown that compounds 1 and 2 present similar emission spectra compared to the free-ligand. The emission spectra are also studied from the theoretical point of view by means of time-dependent density-functional theory (TD-DFT) calculations to confirm that ligand-centred π-π* electronic transitions govern emission of compound 1 and 2. Finally, the PL properties are also studied in aqueous solution to explore the stability and emission capacity of the compounds.


2021 ◽  
Vol 23 (1) ◽  
pp. 62-80
Author(s):  
Laura Järvi

In the context of the Finnish welfare state, this article examines the role of occupational welfare in the interplay between public and occupational sickness benefits from 1947 to 2016, to analyse how the two sickness benefits have interacted over time and the role occupational welfare has played in sickness provision. Previous research has noted that occupational benefits may support or compensate for the much-debated declining welfare state. Hence, it is important to acquire greater knowledge about the public-occupational interplay. The study uses in-depth individual-level analysis from a retrospective point of view, which has been rare in previous research, and examines the public-occupational interplay in the Finnish sickness benefit system from the first national collective agreements to 2016. Based on the reforms made to the public system, the article identifies and utilises six different phases of the Finnish sickness allowance system in the main analysis. The institutional development of sickness provision is investigated by analysing the compensation rate and benefit period, using metalworkers as a representative example of blue-collar workers. The results indicate that occupational benefits are strongly institutionalised in the Finnish sickness benefit system. The interplay between statutory and occupational sickness benefits has taken different forms over time, and occupational benefits have been re-negotiated as the statutory system has been reformed. The article provides valuable information on the historical development and relevance of occupational welfare, in terms of not only understanding its significance for individuals but also comprehending the logic of the interplay in the public-private mix of welfare provision.


Sign in / Sign up

Export Citation Format

Share Document