Trap Strip and Field Border Modification for Management of the Wheat Stem Sawfly (Hymenoptera: Cephidae)

2001 ◽  
Vol 36 (1) ◽  
pp. 34-45 ◽  
Author(s):  
Wendell L. Morrill ◽  
David K. Weaver ◽  
Gregory D. Johnson

The alternate-year summer fallow wheat production system predominates in the semi-arid prairie regions of Montana. These farms consist of the current crop and idle fields in which the previous year's crop was located. Larvae of the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), overwinter in post-harvest wheat stubble. Adults appear and disperse to new crops during the following growing season. Adults begin oviposition as soon as suitable hosts are encountered; therefore, larval infestations usually are concentrated along field borders. We tested several types of trap strips as intercepts to reduce dispersion of adult sawflies into fields. The most successful system was a fall-planted winter wheat trap that protected spring-planted wheat. These trap strips utilized the “border effect” as well as the higher attractiveness of the earlier maturing winter wheat. In another trial, losses were reduced by planting a semi-resistant solid-stemmed wheat cultivar within the border of a comparatively higher yielding hollow-stemmed cultivar.

1991 ◽  
Vol 5 (2) ◽  
pp. 369-375 ◽  
Author(s):  
Gail A. Wicks ◽  
Robert N. Klein

We conducted research to determine if soybeans can be grown successfully in a no-till environment, in the semi-arid areas of the central Great Plains near North Platte, NE. Soybeans planted no-till into winter wheat stubble that was sprayed with glyphosate yielded more than when planted into soil that was rototilled in a winter wheat-soybean-fallow rotation. However, grain yield averaged only 420 kg ha-1during 1975, 1976, and 1977. No-till soybean grown in a winter wheat-grain sorghum-soybean rotation during 1982 through 1985 yielded an average of 1370 kg ha-1. Low yields were associated with lack of precipitation during the fallow period after winter wheat harvest or grain sorghum harvest and during the soybean pod elongation and filling period. Several herbicides gave excellent weed control in soybeans when applied either after wheat harvest, early preplant, or at planting time. None of the herbicides persisted long enough to reduce grain yields of winter wheat planted into the soybean residue. With present production costs these nonirrigated rotations are not economical in the semi-arid region of the central Great Plains of the United States.


1992 ◽  
Vol 72 (1) ◽  
pp. 1-12 ◽  
Author(s):  
G. P. Lafond

A study was conducted to evaluate European cereal management techniques in winter wheat under semi-arid growing conditions. Combinations of rates and split applications of ammonium nitrate fertilizer with a plant growth regulator and/or a late season fungicide application were investigated using no-till "stubbled-in" production practices in two winter wheat cultivars, Norwin and Norstar at two locations over 3 yr. Nitrogen fertilizer gave the maximum yield when it was applied in mid-April. Split applications of nitrogen did not improve grain yields or grain protein concentration. A height reduction was observed with the use of plant growth regulators in both cultivars but no benefits were incurred due to the lack of lodging. The late season fungicide application had some effect on increasing kernel weight in both cultivars but rarely translated into a higher yield. Nitrogen and growing conditions had the largest effects on yield and the dilemma faced by producers is to correctly match nitrogen rates with environmental conditions given that the nitrogen has to be applied early in the spring. Available spring soil moisture and soil residual nitrogen provided little help in determining the rate of nitrogen giving the maximum economic yield because assumptions on growing season precipitation have to be made. It is suggested that nitrogen management be based on a risk analysis which would involve determining the probability of different levels of growing season precipitation for various climatic zones and soil types and the corresponding yield levels expected. Rates of nitrogen fertilizer would then be adjusted according to soil residual nitrogen levels and the risk the producer is willing to assume. This will require more extensive research and development of crop production models.Key words: Nitrogen fertilizer, Triticum aestivum L., intensive cereal management, propiconazole, chlormequat chloride, ethephon


Weed Science ◽  
1986 ◽  
Vol 34 (6) ◽  
pp. 901-905 ◽  
Author(s):  
Frank L. Young

A 2-yr field study was conducted to measure the growth and development of Russian thistle (Salsola ibericaSennen and Pau # SASKR) in the growing crops of winter and spring wheat (Triticum aestivumL.) and after harvest of these crops. In herbicide-free conditions, few Russian thistle seedlings emerged in winter wheat. Only 50% of these plants survived compared to 92 and 95% survival in spring wheat and crop-free treatments, respectively. Compared to growth in the crop-free treatment, both wheat types suppressed oven-dry weight, height, and width of Russian thistle plants during the crop-growing season and after crop harvest. During the crop-growing season, winter wheat suppressed Russian thistle height and width more than spring wheat. After crop harvest, oven-dry weight of Russian thistle plants grown in winter wheat stubble was suppressed 75% compared to plants grown in spring wheat stubble. Russian thistle plants grown in crop-free, spring wheat, and winter wheat treatments produced 152 100, 17 400, and 4 600 seeds/plant, respectively.


2001 ◽  
Vol 52 (3) ◽  
pp. 317 ◽  
Author(s):  
Shaozhong Kang ◽  
Fucang Zhang ◽  
Xiaotao Hu ◽  
Peter Jerie ◽  
Lu Zhang

A lysimeter experiment was conducted during 19866—96 to study the impacts of groundwater tables on the capillary contribution, evapotranspiration, and crop coefficient of maize and winter wheat grown in a semi-arid region in loess loam soils. The depth of groundwater table was set to 0.5, 0.8, 1.0, 1.2, 1.5, 2.0, and 2.50 m, respectively. The results showed that the rate of capillary contribution from groundwater to crop root-zone was influenced mainly by the depth of the water tables. The daily variation in capillary contribution was not the same as pan evaporation; the peak was delayed when the water table was >0.8 m, and the time of delay increased with the depth of water table. The crop evapotranspiration was decreased with increasing groundwater table in the early growth period and harvest period. The maximum evapotranspiration occurred at 1.2 m groundwater table in the other periods. Values of crop coefficients (K c ) were estimated based on the measured evapotranspiration (ET) and reference crop ET computed by the modified Penman method. The estimated K c was significantly different from the values computed and used in the region in the absence of groundwater table effects, and it varied markedly with groundwater tables. Relationships between the crop coefficient and the depth of groundwater table were developed using mean crop coefficients derived from multi-year data. It was found that linear model was better for the period Octobermp;mdash;February in the winter wheat growing season and June in the summer maize growing season. The polynomial model was suitable for the period March;mdahs;June in the winter wheat growing season and from July to October in the summer maize growing season.


2005 ◽  
Vol 33 (1) ◽  
pp. 251-254 ◽  
Author(s):  
Éva Lehoczky ◽  
András Kismányoky ◽  
Tamás Kismányoky

Author(s):  
Mohamed Mergoum ◽  
Jerry W. Johnson ◽  
James W. Buck ◽  
Steve Sutton ◽  
Benjamin Lopez ◽  
...  

2021 ◽  
pp. 1-14
Author(s):  
Jodie A. Crose ◽  
Misha R. Manuchehri ◽  
Todd A. Baughman

Abstract Three herbicide premixes have recently been introduced for weed control in wheat. These include: halauxifen + florasulam, thifensulfuron + fluroxypyr, and bromoxynil + bicyclopyrone. The objective of this study was to evaluate these herbicides along with older products for their control of smallseed falseflax in winter wheat in Oklahoma. Studies took place during the 2017, 2018, and 2020 winter wheat growing seasons. Weed control was visually estimated every two weeks throughout the growing season and wheat yield was collected in all three years. Smallseed falseflax size was approximately six cm in diameter at time of application in all years. Control ranged from 96 to 99% following all treatments with the exception of bicyclopyrone + bromoxynil and dicamba alone, which controlled falseflax 90%. All treatments containing an acetolactate synthase (ALS)-inhibiting herbicide achieved adequate control; therefore, resistance is not suspected in this population. Halauxifen + florasulam and thifensulfuron + fluroxypyr effectively controlled smallseed falseflax similarly to other standards recommended for broadleaf weed control in wheat in Oklahoma. Rotational use of these products allows producers flexibility in controlling smallseed falseflax and reduces the potential for development of herbicide resistance in this species.


Genetics ◽  
1988 ◽  
Vol 119 (2) ◽  
pp. 453-456
Author(s):  
R S Zemetra ◽  
R Morris

Abstract During a study on the genetic control of winterhardiness in winter wheat (Triticum aestivum L. group aestivum), a gene that affected vernalization was found on chromosome 3B in the winter wheat cultivar ;Wichita.' When chromosome 3B from Wichita was substituted into the winter wheat cultivar ;Cheyenne,' the resultant substitution line exhibited a spring growth habit. This is unusual since a cross between the cultivars Wichita and Cheyenne results in progeny that exhibit the winter growth habit. The F(2) plants from a cross of the 3B substitution line to Cheyenne, the recipient parent, segregated 3:1 for heading/no heading response in the absence of vernalization (chi(2) = 2.44). Earliness of heading appeared to be due to an additive effect of the 3B gene as shown by the segregation ratio 1:2:1 (early heading-later heading-no heading) (chi(2) = 2.74). This vernalization gene differs from previously described vernalization genes because, while dominant in a Cheyenne background, its expression is suppressed in Wichita. The gene may have an effect on winter hardiness in Wichita. In a field test for winter survival the 3B substitution line had only 5% survival, while Wichita and Cheyenne had 50 and 80% survival, respectively. No other substitution line significantly reduced winter survival. The difference between Wichita and Cheyenne in winterhardiness may be due to the vernalization gene carried on the 3B chromosome.


Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.


Sign in / Sign up

Export Citation Format

Share Document