Effect of Temperature and Host Plant on Survival and Development of Altica litigata Fall

2007 ◽  
Vol 42 (1) ◽  
pp. 66-73 ◽  
Author(s):  
Gretchen V. Pettis ◽  
S. Kristine Braman

Altica litigata Fall (Coleoptera: Chrysomelidae) is oligophagus, feeding on numerous plants in the Lythraceae and Onagraceae families which include weeds and cultivated plants, such as primroses (Oenothera spp.) often found in commercial nurseries. Adult A. litigata are important pests of crapemyrtles (Lagerstroemia spp.; Lythraceae) grown in container nurseries in the southern United States. The severity of the pest problem attributed to feeding by these beetles has increased substantially during the past decade. Whereas commonly recommended pesticides easily control these beetles, knowing when to time applications to avoid large defoliation events could focus scouting efforts and prevent economic loss. The objective of our research was to define more closely the relationship between temperature, host plant and development of A. litigata to permit prediction of damaging stages of the beetle on landscape and nursery plants. A. litigata completed development between 15 and 30°C on six weedy or cultivated hosts: Gaura lindheimeri Engelman & A. Gray ‘Siskyou pink’, G. lindheimeri ‘Corries gold’, G. lindheimeri ‘Whirling butterflies’, Oenothera speciosa Nutt., Oenothera laciniata J. Hill and Oenothera missourensis_Simms. Development was optimal on Oenothera spp. Duration of development from eclosion to adult emergence ranged from 13.3 d at 30°C on O. speciosa to 64.0 d at 15°C on G. lindeimeri ‘Whirling butterflies.’ Duration of egg development ranged from 4.5 d at 30°C to 15.8 d at 15°C. The relationship between temperature and rate of development was expressed as a linear thermal unit model for each stage and for combined larval/pupal development. Development parameters varied with host plant. Averaged among the six hosts, larval and pupal development required 237.3 degree-days (DD) above a threshold of 9.2°C. Eggs required 87.5 DD above a 9.8°C threshold. Observation of beetles or feeding injury on indicator plants such as weedy or cultivated Oenothera spp. in late winter or early spring can alert nursery or landscape managers to anticipate a new generation within 300–400 DD above the approximate 10°C developmental threshold used for many DD calculator models for landscape and nursery pests.

2012 ◽  
Vol 58 (No. 12) ◽  
pp. 560-568 ◽  
Author(s):  
E.W. Mbuthia ◽  
J.H. Shariff ◽  
A. Raman ◽  
D.S. Hodgkins ◽  
H.I. Nicol ◽  
...  

Shelterbelts are important for the sustainability of agriculture because they provide a variety of benefits to farmers and the society. Several published papers demonstrate that integration of shelterbelts with agroecosystems offers positive outcomes, such as better yield, more congenial microclimate, and greater organic matter levels. Nonetheless, soil biological diversity, the driver of greater organic matter levels, has not been convincingly tested and verified yet. In addressing this gap, we measured abundance and diversity of populations of arthropods and fungi in three<br />11-year old shelterbelts integrated with pasture to determine whether a correlation exists between the abundance of and diversity in populations of arthropods and fungi in two seasons: late autumn-early winter (May&ndash;June 2011) and late winter-early spring (August&ndash;September 2011). Litter from the soil surface and soil from two depths were sampled at increasing distance from the midpoint of shelterbelts for the extraction of arthropods and isolation culturing of fungi. The relationship among distance, depth and biodiversity of different groups of arthropods and fungi was analysed using linear regression. We found that over both seasons arthropod abundance in the litter and soil declined with increasing distance from the midpoint of the shelterbelts, and with soil depth. However, fungi abundance in either season was not affected by proximity to the shelterbelt but increased with greater soil depth. Distance from the shelterbelt midpoints did not bear an impact on the diversity richness of both arthropods and fungi.


1983 ◽  
Vol 115 (9) ◽  
pp. 1203-1208 ◽  
Author(s):  
H. J. Herbert ◽  
K. B. McRae

AbstractAdult emergence of the spotted tentiform leafminer, Phyllonorycter blancardella (F.), and its primary endoparasite, Apanteles ornigis Weed, from overwintering pupae was studied at five constant temperatures. Days to 50% emergence for P. blancardella were 55.4, 24.4, 14.4, 10.8, and 8.3 and for A. ornigis were ∞, 47.8, 25.6, 17.6, and 15.1 at 8°, 12°, 16°, 20°, and 24 °C, respectively. The rate of pupal development was approximately a linear function of temperature for P. blancardella but was nonlinear for A. ornigis. The threshold of development, estimated from the 50% emergence data, was 4.4 ±.33 °C for the host and 9.6 ±.50 °C for the parasite. The development time for the host was approximately one half that for the parasite at temperatures 12°–24 °C. The difference in emergence dates between host and parasite under normal Nova Scotia conditions was predicted to be 35 days. The timing of chemical controls in an integrated pest management program could be predicted from the accumulation of daily development units based on the power function for both species, provided a field study is undertaken to confirm the extrapolation to diurnal temperature regimes.


2011 ◽  
Vol 64 ◽  
pp. 290-290
Author(s):  
P.R.C. Doddala ◽  
M.A. Minor ◽  
S.A. Trewick ◽  
D.J. Rogers

Eucolaspis spp beetles are native and endemic to New Zealand and are important pests of exotic fruit crops Organic apple orchards in Hawkes Bay seem to be particularly vulnerable and there adult beetles emerge during spring/summer feed on leaves and fruitlets and cause significant economic loss Seasonal variations in bronze beetle occurrence especially in adult emergence add further problems to already deficient control measures available to organic growers Phenological models that could predict adult emergence in the field would greatly benefit bronze beetle control programmes Pupal development was observed in bronze beetles at three constant temperatures (12 15 and 18C) in the lab and the lower threshold temperature (469C) and degreedays (237 degreedays) required for adult emergence from pupae were calculated using linear regression Adult emergence data obtained from other trials and from Plant Food Research were used to validate the thermal calculations A biofix date of the second week in September and horizontal degreeday calculation method using soil temperature (at 10 cm depth) gave best predictions Further research on thermal requirements of prepupal postdiapause larvae would augment these findings


1996 ◽  
Vol 168 (2) ◽  
pp. 205-209 ◽  
Author(s):  
John M. Hettema ◽  
Dermot Walsh ◽  
Kenneth S. Kendler

BackgroundAn excess of late winter and early spring births in schizophrenia has been repeatedly demonstrated. Previous evidence has suggested that the risk for schizophrenia may differ in relatives of schizophrenic probands born in this high risk period v. at other times of the year.MethodIn an epidemiologically based family study conducted in the west of Ireland, we examined the relationship between season of birth in schizophrenia and schizophrenia spectrum probands and the risk for schizophrenia and related disorders in first-degree relatives. Risk was assessed using the Cox proportional hazard method. We examined four birth seasons previously shown to significantly predict risk for schizophrenia.ResultsNeither the risk for schizophrenia nor that for schizophrenia spectrum disorders in relatives was significantly associated with season of birth in probands.ConclusionsSeason of birth does not, in this sample, identify schizophrenic probands with particularly high or low familial vulnerability to illness.


2003 ◽  
Vol 93 (5) ◽  
pp. 375-381 ◽  
Author(s):  
M.N. Bayoh ◽  
S.W. Lindsay

AbstractGlobal warming may affect the future pattern of many arthropod-borne diseases, yet the relationship between temperature and development has been poorly described for many key vectors. Here the development of the aquatic stages of Africa's principal malaria vector, Anopheles gambiae s.s. Giles, is described at different temperatures. Development time from egg to adult was measured under laboratory conditions at constant temperatures between 10 and 40°C. Rate of development from one immature stage to the next increased at higher temperatures to a peak around 28°C and then declined. Adult development rate was greatest between 28 and 32°C, although adult emergence was highest between 22 and 26°C. No adults emerged below 18°C or above 34°C. Non-linear models were used to describe the relationship between developmental rate and temperature, which could be used for developing process-based models of malaria transmission. The utility of these findings is demonstrated by showing that a map where the climate is suitable for the development of aquatic stages of A. gambiae s.s. corresponded closely with the best map of malaria risk currently available for Africa.


Author(s):  
D. T. Gauld ◽  
J. E. G. Raymont

The respiratory rates of three species of planktonic copepods, Acartia clausi, Centropages hamatus and Temora longicornis, were measured at four different temperatures.The relationship between respiratory rate and temperature was found to be similar to that previously found for Calanus, although the slope of the curves differed in the different species.The observations on Centropages at 13 and 170 C. can be divided into two groups and it is suggested that the differences are due to the use of copepods from two different generations.The relationship between the respiratory rates and lengths of Acartia and Centropages agreed very well with that previously found for other species. That for Temora was rather different: the difference is probably due to the distinct difference in the shape of the body of Temora from those of the other species.The application of these measurements to estimates of the food requirements of the copepods is discussed.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Zhang ◽  
Yujie Meng ◽  
Hejia Song ◽  
Ran Niu ◽  
Yu Wang ◽  
...  

Abstract Background Although exposure to air pollution has been linked to many health issues, few studies have quantified the modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo, China. Methods The data of daily incidence of influenza and the relevant meteorological data and air pollution data in Ningbo from 2014 to 2017 were retrieved. Low, medium and high temperature layers were stratified by the daily mean temperature with 25th and 75th percentiles. The potential modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo was investigated through analyzing the effects of air pollutants stratified by temperature stratum using distributed lag non-linear model (DLNM). Stratified analysis by sex and age were also conducted. Results Overall, a 10 μg/m3 increment of O3, PM2.5, PM10 and NO2 could increase the incidence risk of influenza with the cumulative relative risk of 1.028 (95% CI 1.007, 1.050), 1.061 (95% CI 1.004, 1.122), 1.043 (95% CI 1.003, 1.085), and 1.118 (95% CI 1.028, 1.216), respectively. Male and aged 7–17 years were more sensitive to air pollutants. Through the temperature stratification analysis, we found that temperature could modify the impacts of air pollution on daily incidence of influenza with high temperature exacerbating the impact of air pollutants. At high temperature layer, male and the groups aged 0–6 years and 18–64 years were more sensitive to air pollution. Conclusion Temperature modified the relationship between air pollution and daily incidence of influenza and high temperature would exacerbate the effects of air pollutants in Ningbo.


Author(s):  
Mervat A. Kandil ◽  
Hemat Z. Moustafa

Abstract Background Cotton bollworms such as Pectinophora gossypiella and Earias insulana are serious pests which destroy the cotton plant, and Bracon brevicornis is a parasitoid which attacked the larvae of bollworms. Results In this study, experiments were performed to investigate and evaluate the toxicity of etofenprox and chlorpyrifos insecticides against newly hatched larvae of Pectinophora gossypiella and Earias insulana. Some biological aspects of compound effects on larval and pupal duration, percentage of mortality, and percentage of adult emergence which resulted from treated newly hatched larvae were studied. The results revealed that LC50 was 0.7 and 0.87 ppm when P. gossypiella was treated with etofenprox and chlorpyrifos, respectively, while LC50 was 0.09 and 0.73 ppm when E. insulana was treated with etofenprox and chlorpyrifos, respectively. The obtained results showed that the percentage of mean larval mortality was 65.0 and 63.0% for treated P. gossypiella, while it was 71.0 and 66.0% for treated E. insulana. The corresponding figure for pupal percentage mortality was 8.0 and 10.0% for treated P. gossypiella, but it was 5.0 and 2.0% for treated E. insulana, with etofenprox and chlorpyrifos, and a prolongation effect in larval and pupal development (total immature stage) resulted from treated both bollworms as follows: 35.5 and 32.4 days for treated P. gossypiella compared with 21.9 days in control and 34.7 and 23.2 days for treated E. insulana compared with 23.1 days in control. The indirect effect of etofenprox and chlorpyrifos on the total immature stage of Bracon brevicornis was 18.2 and 19.5 days compared with 14.3 days in control when B. brevicornis parasitized on P. gossypiella larvae while it was 19.8 and 20.6 days compared with 15.2 days when B. brevicornis parasitized on E. insulana larvae. Conclusion The life cycle of B. brevicornis after parasitism on P. gossypiella and E. insulana larvae treated with etofenprox and chlorpyrifos were increased than the control larvae.


Sign in / Sign up

Export Citation Format

Share Document