scholarly journals Calculation of the creation and annihilation operators of a free particle in the light cone coordinate formalism

Author(s):  
Jorge Kysnney Santos Kamassury ◽  
Damião Pedro Meira Filho ◽  
Charles da Rocha Silva ◽  
João Bosco Soares Pampolha Júnior ◽  
Robhyson Denys Rodrigues da Silva ◽  
...  

This work didactically presents the mathematical procedures required for the construction of the creation and annihilation operators for a free quantum particle considering the coordinates of the light cone. For that, the relationships between the aforementioned coordinates and the coordinates (ct, x, y, z) are listed, in addition to the use of the Klein-Gordon-Fock equation in the formalism of the light cone coordinates. Finally, the temporal evolution operator and the quantum operators of creation and annihilation of the integral type of motion are obtained.

2009 ◽  
Vol 24 (05) ◽  
pp. 361-367 ◽  
Author(s):  
M. R. SETARE ◽  
O. HATAMI

We have obtained the creation and annihilation operators directly from the eigenfunction for the general deformed morse potential in one-dimensional Klein–Gordon equation with equally mixed vector and scalar potentials and also in the Schrödinger equation, we show that these operators satisfy the commutation relation of the SU(1, 1) group. Then we have expressed the Hamiltonian in terms of the su(1, 1) algebra.


2000 ◽  
Vol 15 (24) ◽  
pp. 3771-3781
Author(s):  
C. G. BOLLINI ◽  
M. C. ROCCA

A higher order field has different forms of excitation. Some of them have negative energies. The signs of the quantization rules depend on the signs of the energies. An abnormal sign implies a negative sign of the residue at the on-shell pole of the propagator, leading to a clash with unitarity. To change these signs we can change the identification of the creation and annihilation operators. But then the energy has no lower bound. The way out is found by adopting a symmetric vacuum state. The corresponding propagator is a half retarded and half advanced Green function. It has a zero residue at the on-shell pole. There is no associated free particle. The abnormal modes act only as mediators of interactions.


1993 ◽  
Vol 08 (09) ◽  
pp. 1629-1635 ◽  
Author(s):  
IAN H. REDMOUNT ◽  
WAI-MO SUEN

The simple physics of a free particle reveals important features of the path-integral formulation of relativistic quantum theories. The exact quantum-mechanical propagator is calculated here for a particle described by the simple relativistic action proportional to its proper time. This propagator is nonvanishing outside the light cone, implying that spacelike trajectories must be included in the path integral. The propagator matches the WKB approximation to the corresponding configuration-space path integral far from the light cone; outside the light cone that approximation consists of the contribution from a single spacelike geodesic. This propagator also has the unusual property that its short-time limit does not coincide with the WKB approximation, making the construction of a concrete skeletonized version of the path integral more complicated than in nonrelativistic theory.


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 200 ◽  
Author(s):  
He Yang

The Klein-Gordon equation is a model for free particle wave function in relativistic quantum mechanics. Many numerical methods have been proposed to solve the Klein-Gordon equation. However, efficient high-order numerical methods that preserve energy and linear momentum of the equation have not been considered. In this paper, we propose high-order numerical methods to solve the Klein-Gordon equation, present the energy and linear momentum conservation properties of our numerical schemes, and show the optimal error estimates and superconvergence property. We also verify the performance of our numerical schemes by some numerical examples.


2020 ◽  
Vol 50 (9) ◽  
pp. 977-1007
Author(s):  
Giuseppe Nisticò

AbstractThe difficulties of relativistic particle theories formulated by means of canonical quantization, such as those of Klein–Gordon and Dirac, ultimately led theoretical physicists to turn to quantum field theory to model elementary particle physics. In order to overcome these difficulties, the theories of the present approach are developed deductively from the physical principles that specify the system, without making use of canonical quantization. For a free particle these starting assumptions are invariance of the theory and covariance of position with respect to Poincaré transformations. In pursuing the approach, the effectiveness of group theoretical methods is exploited. The coherent development of our program has shown that robust classes of representations of the Poincaré group, discarded by the known particle theories, can in fact be taken as bases for perfectly consistent theories. For massive spin zero particles, six inequivalent theories have been determined, two of which do not correspond to any of the current ones; all of these theories overcome the difficulties of Klein–Gordon one. The present lack of the explicit transformation properties of position with respect to boosts prevents the complete determination of non zero spin particle theories. In the past a particular form of these transformation properties was adopted by Jordan and Mukunda. We check its consistency within the present approach and find that for spin $$\frac{1}{2}$$ 1 2 particles there is only one consistent theory, which is unitarily related to Dirac’s; yet, once again, it requires classes of irreducible representations previously discarded.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550060 ◽  
Author(s):  
E. G. Delgado Acosta ◽  
V. M. Banda Guzmán ◽  
M. Kirchbach

The gauged Klein–Gordon equation, extended by a gsσμνFμν/4 interaction, the contraction of the electromagnetic field strength tensor, Fμν, with the generators, σμν/2, of the Lorentz group in (1/2, 0) ⊕ (0, 1/2), and gs being the gyromagnetic factor, is examined with the aim to find out as to what extent it qualifies as a wave equation for general relativistic spin-1/2 particles transforming as (1/2, 0) ⊕ (0, 1/2) and possibly distinct from the Dirac fermions. This equation can be viewed as the generalization of the gs = 2 case, known under the name of the Feynman–Gell-Mann equation, the only one which allows for a bilinearization into the gauged Dirac equation and its conjugate. At the same time, it is well-known a fact that a gs = 2 value can also be obtained upon the bilinearization of the nonrelativistic Schrödinger into nonrelativistic Pauli equations. The inevitable conclusion is that it must not be necessarily relativity which fixes the gyromagnetic factor of the electron to g(1/2) = 2, but rather the specific form of the primordial quadratic wave equation obeyed by it, that is amenable to a linearization. The fact is that space-time symmetries alone define solely the kinematic properties of the particles and neither fix the values of their interacting constants, nor do they necessarily prescribe linear Lagrangians. Information on such properties has to be obtained from additional physical inputs involving the dynamics. We here provide an example in support of the latter statement. Our case is that the spin-1/2- fermion residing within the four-vector spinor triad, ψμ ~ (1/2+-1/2--3/2-), whose sectors at the free particle level are interconnected by spin-up and spin-down ladder operators, does not allow for a description within a linear framework at the interacting level. Upon gauging, despite transforming according to the irreducible (1/2, 1) ⊕ (1, 1/2) building block of ψμ, and being described by 16-dimensional four-vector spinors, though of only four independent components each, its Compton scattering cross sections, both differential and total, result equivalent to those for a spin-1/2 particle described by the generalized Feynman–Gell-Mann equation from above (for which we provide an independent algebraic motivation) and with g(1/2-) = -2/3. In effect, the spin-1/2- particle residing within the four-vector spinor effectively behaves as a true relativistic "quadratic" fermion. The g(1/2-) = -2/3 value ensures in addition the desired unitarity in the ultraviolet. In contrast, the spin-1/2+ particle, in transforming irreducibly in the (1/2, 0) ⊕ (0, 1/2) sector of ψμ, is shown to behave as a truly linear Dirac fermion. Within the framework employed, the three spin sectors of ψμ are described on equal footing by representation- and spin-specific wave equations and associated Lagrangians which are of second-order in the momenta.


2009 ◽  
Vol 24 (27) ◽  
pp. 2203-2211 ◽  
Author(s):  
PULAK RANJAN GIRI

We show that the intriguing localization of a free particle wave-packet is possible due to a hidden scale present in the system. Self-adjoint extensions (SAE) is responsible for introducing this scale in quantum mechanical models through the nontrivial boundary conditions. We discuss a couple of classically scale invariant free particle systems to illustrate the issue. In this context it has been shown that a free quantum particle moving on a full line may have localized wave-packet around the origin. As a generalization, it has also been shown that particles moving on a portion of a plane or on a portion of a three-dimensional space can have unusual localized wave-packet.


Author(s):  
P. Kordas

Einstein’s equations with two commuting Killing vectors and the associated Lax pair are considered. The equations for the connection A ( ς , η , γ )= Ψ , γ Ψ −1 , where γ the variable spectral parameter are considered. A transition matrix T = A ( ς , η , γ ) A −1 ( ξ , η , γ ) for A is defined relating A at ingoing and outgoing light cones. It is shown that it satisfies equations familiar from integrable PDE theory. A transition matrix on ς = constant is defined in an analogous manner. These transition matrices allow us to obtain a hierarchy of integrals of motion with respect to time, purely in terms of the trace of a function of the connections g , ς g −1 and g , η g −1 . Furthermore, a hierarchy of integrals of motion in terms of the curvature variable B = A , γ A −1 , involving the commutator [ A (1), A (−1)], is obtained. We interpret the inhomogeneous wave equation that governs σ = lnN , N the lapse, as a Klein–Gordon equation, a dispersion relation relating energy and momentum density, based on the first connection observable and hence this first observable corresponds to mass. The corresponding quantum operators are ∂/∂ t , ∂/∂ z and this means that the full Poincare group is at our disposal.


2016 ◽  
Vol 25 (09) ◽  
pp. 1641004 ◽  
Author(s):  
David Dempsey ◽  
Sam R. Dolan

We study wave propagation in a draining bathtub: a black hole analogue in fluid mechanics whose perturbations are governed by a Klein–Gordon equation on an effective Lorentzian geometry. Like the Kerr spacetime, the draining bathtub geometry possesses an (effective) horizon, an ergosphere and null circular orbits. We propose here that a ‘pulse’ disturbance may be used to map out the light-cone of the effective geometry. First, we apply the eikonal approximation to elucidate the link between wavefronts, null geodesic congruences and the Raychaudhuri equation. Next, we solve the wave equation numerically in the time domain using the method of lines. Starting with Gaussian initial data, we demonstrate that a pulse will propagate along a null congruence and thus trace out the light-cone of the effective geometry. Our new results reveal features, such as wavefront intersections, frame-dragging, winding and interference effects, that are closely associated with the presence of null circular orbits and the ergosphere.


Sign in / Sign up

Export Citation Format

Share Document