scholarly journals Assessment on the Sustainable Use of Alternative Construction Materials as a Substitute to Natural Aggregates

◽  
2016 ◽  
Author(s):  
Theresa George ◽  
◽  
Joseph Anochie-Boateng ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 2756
Author(s):  
Federica Vitale ◽  
Maurizio Nicolella

Because the production of aggregates for mortar and concrete is no longer sustainable, many attempts have been made to replace natural aggregates (NA) with recycled aggregates (RA) sourced from factories, recycling centers, and human activities such as construction and demolition works (C&D). This article reviews papers concerning mortars with fine RA from C&D debris, and from the by-products of the manufacturing and recycling processes of building materials. A four-step methodology based on searching, screening, clustering, and summarizing was proposed. The clustering variables were the type of aggregate, mix design parameters, tested properties, patents, and availability on the market. The number and the type of the clustering variables of each paper were analysed and compared. The results showed that the mortars were mainly characterized through their physical and mechanical properties, whereas few durability and thermal analyses were carried out. Moreover, few fine RA were sourced from the production waste of construction materials. Finally, there were no patents or products available on the market. The outcomes presented in this paper underlined the research trends that are useful to improve the knowledge on the suitability of fine RA from building-related processes in mortars.


2021 ◽  
Vol 6 (11) ◽  
pp. 159
Author(s):  
Ricardo Infante Gomes ◽  
David Bastos ◽  
Catarina Brazão Farinha ◽  
Cinthia Maia Pederneiras ◽  
Rosário Veiga ◽  
...  

Construction and demolition wastes (CDW) are generated at a large scale and have a diversified potential in the construction sector. The replacement of natural aggregates (NA) with CDW recycled aggregates (RA) in construction materials, such as mortars, has several environmental benefits, such as the reduction in the natural resources used in these products and simultaneous prevention of waste landfill. Complementarily, CDW have the potential to capture CO2 since some of their components may carbonate, which also contributes to a decrease in global warming potential. The main objective of this research is to evaluate the influence of the exposure of CDW RA to CO2 produced in cement factories and its effect on mortars. Several mortars were developed with a volumetric ratio of 1:4 (cement: aggregate), with NA (reference mortar), CDW RA and CDW RA exposed to high levels of CO2 (CRA). The two types of waste aggregate were incorporated, replacing NA at 50% and 100% (in volume). The mortars with NA and non-carbonated RA and CRA from CDW were analysed, accounting for their performance in the fresh and hardened states in terms of workability, mechanical behaviour and water absorption by capillarity. It was concluded that mortars with CDW (both CRA and non-carbonated RA) generally present a good performance for non-structural purposes, although they suffer a moderate decrease in mechanical performance when NA is replaced with RA. Additionally, small improvements were found in the performance of the aggregates and mortars with CRA subjected to a CO2 curing for a short period (5 h), while a long carbonation period (5 d) led to a decrease in performance, contrary to the results obtained in the literature that indicate a significant increase in such characteristics. This difference could be because the literature focused on made-in-laboratory CDW aggregates, while, in this research, the wastes came from real demolition activities, and were thus older and more heterogeneous.


2019 ◽  
Vol 1 (3) ◽  
Author(s):  
Grace Kurniawati ◽  
Lisa Oksri Nelfia ◽  
Ade Okvianti Irlan ◽  
Indrawati Sumeru

Construction is growing rapidly nowadays. Buildings, housing, industry/business centers and highways will require natural aggregates which are natural resources that cannot be renewed. Therefore, we need replacement materials able to replace these natural aggregate. The large amount of plastic waste in fields, based on existing data, causes environmental pollution through it can be reused and useful for building and road construction. Most of communities don’t even know the plastic waste processing technology that allow their use in the construction of house construction such as floors, walls, roofs, and hinges and also road construction with not heavy road loads. The purpose of this activity is to provide the knowledge to the people of RPTRA related to technology for the use of plastic waste for building materials and also road construction in the area in the RPTRA environment considering it is not a public road and hence, with not heavy vehicle. The method used is firstly observation and interview of several houses visited. Then activities about using different types of plastic waste as construction materials. Finally, evaluation of the progress of the project by conducting a survey to people who had met the criteria of being a member of the plastic waste program. The success of this program will be the people’s understanding and a significate growing of any highvalue plastic use as construction material. The benefit of this community service is to increase the knowledge and insight of the people of RPTRA, South Meruya, and West Jakarta City, related to environmentally friendly technologies such as plastic waste processing.


2019 ◽  
Vol 281 ◽  
pp. 01018 ◽  
Author(s):  
Ahmad El Hajjar ◽  
Joanna Eid ◽  
Tariq Ouahbi ◽  
Said Taibi

Nowadays, structures are mainly constructed using natural aggregates as sand and gravels. In the future, we would increasingly have to consider replacing them by more abundant and ecological natural materials such as raw earth. However, despite its many qualities (low gray energy, thermal and hygrometric isolation), this eco-material has some defects: cracking by desiccation. The later prevent its widespread diffusion. This study aims to understand the mechanisms of appearance and propagation of cracks in order to try to either prevent or repair it. To carry out this study, digital image correlation technique is used. It consists in performing free desiccation tests to follow the initiation and propagation of cracks, from the beginning of homogeneous strain until the appearance of discontinuity, in order to determine the strains tensor in the massif. In order to understand the origin of cracking, desiccation is studied for different boundary conditions and according to different intrinsic characteristics of the material.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1209 ◽  
Author(s):  
Yinning Zhang ◽  
Leena Katariina Korkiala-Tanttu ◽  
Henry Gustavsson ◽  
Amandine Miksic

As a secondary material, quarry fines are a valuable material to be reused for many purposes in civil engineering projects. The aggregate source depletion, especially the lack of high quality aggregates as expected in the future, as well as the demand for a carbon-neutral society and circular economy, also promotes the high-volume utilization of secondary materials such as quarry fines. The aim of this study is to do a feasibility assessment including a series of laboratory tests and analyses to evaluate the properties of quarry fine materials to determine if this type of material could be qualified as pavement construction material in high volume. The gradation information obtained from both sieving and hydrometer tests indicates the frost susceptibility of unstabilized quarry fines, therefore frost heave tests were performed and which further suggest the necessity of stabilization to improve its properties for pavement applications, especially in structural layers such as base, subbase, or filter layers. Some other general information and properties of unbound quarry fines, especially regarding their validity for application in pavement engineering are also investigated and discussed.


2020 ◽  
Vol 10 (1) ◽  
pp. 351 ◽  
Author(s):  
Patrícia Rodrigues ◽  
José D. Silvestre ◽  
Inês Flores-Colen ◽  
Cristina A. Viegas ◽  
Hawreen H. Ahmed ◽  
...  

This study applies a methodology to evaluate the ecotoxicological potential of raw materials and cement-based construction materials. In this study, natural aggregates and Portland cement were replaced with non-conventional recycled concrete aggregates (RA) and fly ash (FA), respectively, in the production of two concrete products alternative to conventional concrete (used as reference). The experimental program involved assessing both the chemical properties (non-metallic and metallic parameters) and ecotoxicity data (battery of tests with the luminescent bacterium Vibrio fischeri, the freshwater crustacean Daphnia magna, and the yeast Saccharomyces cerevisiae) of eluates obtained from leaching tests of RA, FA, and the three concrete mixes. Even though the results indicated that RA and FA have the ability to release some chemicals into the water and induce its alkalinisation, the respective eluate samples presented no or low levels of potential ecotoxicity. However, eluates from concrete mixes produced with a replacement ratio of Portland cement with 60% of FA and 100% of natural aggregates and produced with 60% of FA and 100% of RA were classified as clearly ecotoxic mainly towards Daphnia magna mobility. Therefore, raw materials with weak evidences of ecotoxicity could lead to the production of concrete products with high ecotoxicological potential. Overall, the results obtained highlight the importance of integrating data from the chemical and ecotoxicological characterization of materials’ eluate samples aiming to assess the possible environmental risk of the construction materials, namely of incorporating non-conventional raw materials in concrete, and contributing to achieve construction sustainability.


2018 ◽  
Vol 10 (10) ◽  
pp. 3581 ◽  
Author(s):  
Ningshuang Zeng ◽  
Yan Liu ◽  
Chao Mao ◽  
Markus König

Environmental burdens arise in the whole life cycle of construction. Waste and pollution are produced in the upstream and downstream of a construction project along the supply chains. The interdependency between on-site construction and off-site logistics also leads to an expansion effect of waste when a disturbance occurs. A related supply chain activated by construction activities should be taken into account to improve the sustainability in construction from a material and waste management perspective. However, it is unknown how the supply chain integration could contribute to the sustainable use of materials in construction. Therefore, an empirical investigation is conducted. A research model with eight latent-constructs is designed through a comprehensive literature review, and 70 completed survey questionnaires are received. Using PLS-SEM (partial least squares-structural equation modeling), sample data is analyzed and seven research hypotheses are examined. Results support the assumption that the construction supply chain integration had a positive correlation with the sustainable use of construction materials. Discussion and relevant suggestions are given for the future research.


2013 ◽  
Vol 701 ◽  
pp. 265-269 ◽  
Author(s):  
Nur Liza Rahim ◽  
Shamshinar Sallehuddin ◽  
Norlia Mohamad Ibrahim ◽  
Roshazita Che Amat ◽  
Mohd Faizal Ab Jalil

Rapid industrial development causes serious problem all over the world such as depletion of natural aggregates and creates enormous amount of waste material from construction and demolition activities. Quantities of polymer wastes also have been increased these recent years due to the boost in industrialization and the rapid improvement in the standard of living. In Malaysia, most of polymer wastes is abandoned and not recycled. This situation causes serious problems such as wastage of natural resources and environmental pollution. Polymer products such as synthetic fibers, plastics and rubber belong to petrochemical compound and not easily biodegradable even after a long period. One of the ways to reduce this problem is to utilize waste materials in the production of concrete. Use of these materials not only helps in getting them utilize in cement, sand, aggregate, concrete and other construction materials, it helps in reducing the cost of concrete manufacturing, but also has numerous indirect benefits such as reduction in land-fill cost, saving in energy and protecting the environment from possible pollution effects. An experimental research is made on the utilization of plastic waste, High Density Polyethylene (HDPE) as coarse aggregates in concrete with a percentage replacement of 10 %, 20 % and 30 %. The laboratory tests include slump test, compressive strength and water absorption were conducted in this research. The samples content 10 % of HDPE has better performance in term of strength.


2021 ◽  
Vol 13 (5) ◽  
pp. 2454
Author(s):  
Jason Maximino C. Ongpeng ◽  
Ernesto J. Guades ◽  
Michael Angelo B. Promentilla

The construction industry faces a challenging situation in attaining sustainable development goals. The carbon footprint of the production and use of construction materials such as the use of ordinary Portland cement in concrete products is still on the rise despite of many alternatives and technologies. In this paper, the local cross-organizational learning approach (COLA) and a systematic review of academic and professional literatures were applied in analyzing the use of fly ash as a geopolymer in the Philippine construction industry. Three primary stakeholders were considered: academe, professional organizations, and industry. Documents from each stakeholder were collected, with keywords including sustainability, fly ash, and geopolymer. These documents included published materials, newsletters, department orders, codes, and policies. Text analytics throughout the documents were applied using the Latent Dirichlet Allocation model, which uses a hierarchal Bayesian-modelling process that groups set of items into topics to determine the maturity level of the organizational learning. An adoption framework is proposed aligning COLA with the awareness, interest, desire, and action (AIDA) funnel model. Results show that the organizational maturity until optimization of academe is sufficient towards interest and desire, while industry is highly encouraged to increase organizational maturity from managed to optimization towards desire and action. Factors such as organizational intelligence (OI) and organizational stupidity (OS) are to be considered in balancing critical thinking across organizations. Further studies are recommended by considering the use of COLA with ASEAN organizations in the development of sustainable construction materials.


2021 ◽  
Vol 13 (12) ◽  
pp. 6676
Author(s):  
Csaba Centeri ◽  
Dénes Saláta ◽  
Alfréd Szilágyi ◽  
György Orosz ◽  
Szilárd Czóbel ◽  
...  

Agriculture has always played a determining role in Hungarian landscapes. Forested areas were also under agricultural use; however, their use changed, starting at least from the Middle Ages when the need for new arable fields resulted in a tremendous decrease in forested areas. The protection of forests started for many reasons, saving them for fuelwood and construction materials. This is the reason why there were periods when forests of the Carpathian Basin suffered from considerable pressure, and even today, this pressure continues; however, the source changed from animal husbandry to tourism, forestry, and wildlife management, or rather hunting. This created the need to search for and analyse former sustainable use of the forests. Furthermore, the consideration of the use of trees/treelines is under the scope of helping the climate adaptation of arable fields. Wooded grasslands have also been mapped and various analyses were done, related to their survival. We wish to introduce some of the ancestral forms of the agricultural use of Hungarian farming, where trees play an important role, their origin, distribution, threatening factors, and their future. Sustainable arable farming systems with trees, including wood-pastures; orchard grasslands and conventional, organic, and permaculture horticultural farms with various proportion of tree cover, will be described.


Sign in / Sign up

Export Citation Format

Share Document