scholarly journals Study of the relationship between the conductive system of the internodes in spring bread wheat with lodging resistance and yield traits

2008 ◽  
Vol 88 (4) ◽  
pp. 649-677 ◽  
Author(s):  
Brent D McCallum ◽  
Ronald M DePauw

Wheat is Canada's largest crop with most of the production in the western Canadian prairie provinces of Manitoba, Saskatchewan and Alberta. Since wheat production started in western Canada, over 100 yr ago, market classes of hexaploid spring bread wheat (Triticum aestivum L.) were the dominant type of wheat, although production of durum wheat [Triticum turgidum L. ssp. durum (Desf.) Husn.)] has grown significantly over this period, and hexaploid winter wheat was grown on a relatively small portion of the wheat area. Within hexaploid wheat there has been diversification into a number of market classes based on different end-use quality criteria. The predominant spring bread wheat class has been the Canada Western Red Spring (CWRS) class. A few cultivars were grown extensively over a long period of time, such as the CWRS wheat Thatcher, which was the dominant cultivar from 1939 to 1968, and Kyle, which was the leading Canada Western Amber Durum (CWAD) cultivar from 1988 to 2004. Other cultivars dominated particular wheat classes for many years such as Glenlea, Canada Western Extra Strong (CWES) spring wheat and Norstar, Canada Western Red Winter (CWRW) wheat. The reasons for newer cultivars replacing older cultivars include improvements in grain yield, resistance to stem rust (Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn.), leaf rust (Puccinia triticina Eriks.), and other diseases, resistance to wheat stem sawfly (Cephus cinctus Nort.), enhanced end-use quality, and other agronomic characteristics such as lodging resistance. Cultivars with improved pest resistance were often rapidly adopted, such as Thatcher and Selkirk, in response to the stem rust epidemics in the 1930s and 1950s, and Rescue and Lillian in response to wheat stem sawfly epidemics in the 1940s and 2000s. Improved grain yield led to the rapid increase of many cultivars including Marquis in the 1910s and 1920s, Neepawa, Wascana and Wakooma in the 1970s, AC Barrie in the 1990s, and Superb in the 2000s. Increased breeding efforts recently have led to many more highly adapted cultivars and subsequently more diverse wheat production. Wheat classes and cultivars in the prairies continue to improve and diversify to meet the challenges of the marketplace and the production concerns of wheat growers. Key words: Rust, fusarium head blight, cereal quality, protein


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 895
Author(s):  
Samira El Hanafi ◽  
Souad Cherkaoui ◽  
Zakaria Kehel ◽  
Ayed Al-Abdallat ◽  
Wuletaw Tadesse

Hybrid wheat breeding is one of the most promising technologies for further sustainable yield increases. However, the cleistogamous nature of wheat displays a major bottleneck for a successful hybrid breeding program. Thus, an optimized breeding strategy by developing appropriate parental lines with favorable floral trait combinations is the best way to enhance the outcrossing ability. This study, therefore, aimed to dissect the genetic basis of various floral traits using genome-wide association study (GWAS) and to assess the potential of genome-wide prediction (GP) for anther extrusion (AE), visual anther extrusion (VAE), pollen mass (PM), pollen shedding (PSH), pollen viability (PV), anther length (AL), openness of the flower (OPF), duration of floret opening (DFO) and stigma length. To this end, we employed 196 ICARDA spring bread wheat lines evaluated for three years and genotyped with 10,477 polymorphic SNP. In total, 70 significant markers were identified associated to the various assessed traits at FDR ≤ 0.05 contributing a minor to large proportion of the phenotypic variance (8–26.9%), affecting the traits either positively or negatively. GWAS revealed multi-marker-based associations among AE, VAE, PM, OPF and DFO, most likely linked markers, suggesting a potential genomic region controlling the genetic association of these complex traits. Of these markers, Kukri_rep_c103359_233 and wsnp_Ex_rep_c107911_91350930 deserve particular attention. The consistently significant markers with large effect could be useful for marker-assisted selection. Genomic selection revealed medium to high prediction accuracy ranging between 52% and 92% for the assessed traits with the least and maximum value observed for stigma length and visual anther extrusion, respectively. This indicates the feasibility to implement genomic selection to predict the performance of hybrid floral traits with high reliability.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Xiaojuan Ran ◽  
Tengfei Tang ◽  
Meiyue Wang ◽  
Luhuan Ye ◽  
Yili Zhuang ◽  
...  

2018 ◽  
Vol 23 ◽  
pp. 120-125
Author(s):  
S. M. Sichkar ◽  
L. H. Velykozhon ◽  
O. V. Dubrovna ◽  
B. V. Morgun

Aim. Determination of the allelic composition of Glu-1 loci in samples of rare wheat species and their hybrids with spring bread wheat. Methods. PCR analysis. Results. In existing collection samples of the rare wheat species the alleles of the a/c loci Glu-A1 were found, while allele b was found only in T.dicoccum, var. volgense (Emmer Kokchetavskaya). An additional amplicon with a length of 450 bp was found in the Glu-A1 locus in the sample (T. dicoccum × Dasypyrum villosum), and in (Ae. ventricosa × T. dicoccum) another one a length of 700 bp in genome B, was found require further research. Among hexaploid wheat, it was revealed genotypes differing in the presence of alleles a and d of the locus Glu-D1. The hybridity of the received forms has been confirmed, as evidenced by the identification of both parent components in the hybrids or alleles of the Glu-D1 locus of bread wheat in hybrids with emmer. Conclusions. Analysis of the allele composition of Glu1 locuses in samples of rare wheat species and their hybrids with bread wheat allowed to select genotypes and hybrid combinations that may be promising for further breeding work. Keywords: Triticum spelta L., T. dicoccum, hybrids, PCR analysis, Glu-1 locus.


2019 ◽  
Vol 21 (2) ◽  
pp. 131-148
Author(s):  
Fatih Karim Hama Ali ◽  
◽  
Dana Azad Abdulkhaleq ◽  

Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2676 ◽  
Author(s):  
Sebastián Romero-Bravo ◽  
Ana María Méndez-Espinoza ◽  
Miguel Garriga ◽  
Félix Estrada ◽  
Alejandro Escobar ◽  
...  

Canopy temperature (Tc) by thermal imaging is a useful tool to study plant water status and estimate other crop traits. This work seeks to estimate grain yield (GY) and carbon discrimination (Δ13C) from stress degree day (SDD = Tc − air temperature, Ta), considering the effect of a number of environmental variables such as the averages of the maximum vapor pressure deficit (VPDmax) and the ambient temperature (Tmax), and the soil water content (SWC). For this, a set of 384 and a subset of 16 genotypes of spring bread wheat were evaluated in two Mediterranean-climate sites under water stress (WS) and full irrigation (FI) conditions, in 2011 and 2012, and 2014 and 2015, respectively. The relationship between the GY of the 384 wheat genotypes and SDD was negative and highly significant in 2011 (r2 = 0.52 to 0.68), but not significant in 2012 (r2 = 0.03 to 0.12). Under WS, the average GY, Δ13C, and SDD of wheat genotypes growing in ten environments were more associated with changes in VPDmax and Tmax than with the SWC. Therefore, the amount of water available to the plant is not enough information to assume that a particular genotype is experiencing a stress condition.


Sign in / Sign up

Export Citation Format

Share Document