scholarly journals Effect of liming and fertilizer application on the changes in available K status of an acid soil

2019 ◽  
Vol 34 (01) ◽  
Author(s):  
Ruma Das ◽  
Shrila Das ◽  
Renu Singh ◽  
Ranbir Singh

Irrespective of treatments, available K decreased in limed over that of un-limed soil. In general, available K progressively increased in both un-limed and half limed soils up to 60 day period of incubation but thereafter showed a decreasing trend on 90th day of the experiment. However, full limed soil showed a different trend of results. Available K increased up to 30th day, thereafter decreased on 60th day then again increased on 90th day of the experiment. The results thus revealed that available K is not retained in the soil for longer period rather it is converted to other forms at the later stage of the experiment.

Soil Research ◽  
1995 ◽  
Vol 33 (3) ◽  
pp. 443 ◽  
Author(s):  
NS Jayawardane ◽  
HD Barrs ◽  
WA Muirhead ◽  
J Blackwell ◽  
E Murray ◽  
...  

Subsoil acidity causes low crop production, which is often associated with shallow root development and restricted soil water extraction. In part I of this series, lime-slotting of an acid soil was shown to improve the soil physical and chemical characteristics for root growth. In a lysimeter study on an acid soil, the effects of several soil ameliorative treatments on root growth, water extraction and yields of a medic crop were evaluated. Large lysimeter cores of 0.75 m diameter and 1.35 m deep were used. The soil treatments included a non-ameliorated acid soil, lime-slotting with a 0.15 m wide and 0.8 m deep slot containing 20 t ha-1 of lime, lime-slotting combined with surface phospho-gypsum application at 10 t ha-1, and complete amelioration of the entire soil volume by mixing lime at 133 t ha-1 and repacking to a low bulk density of 1.1 t m-3. In the non-ameliorated acid soil, medic roots were confined to the surface (0.1 m) layer, resulting in limited water extraction of 32 mm during a prolonged drying cycle, and a low dry matter yield of 70 g m-2. In the lime slotted soil, roots grew within the slot to its full depth, although penetration into the undisturbed soil was restricted to the soil immediately adjacent to the slot. Consequently, the root length per unit surface area (La) at depths below 0.1 m depth was increased to 9.9 km m-2. During a drying cycle, water extraction increased to 58 mm. The increased water extraction came from both the slotted soil and the undisturbed soil between slots. This led to an increase in dry matter yields to 270 g m2. In lime-slotted soils with surface gypsum applications, the root growth and crop water extraction patterns were similar to the lime-slotted soil. Repacking limed soil resulted in similar root lengths (L(a) 10.0 km m-2) as lime-slotted soil. However, owing to more uniform distribution of roots in the repacked soil, water extraction was increased to 100 mm and yields increased to 590 g m-2. Yields of non-ameliorated soil were only 12% of the repacked, limed soil. However, lime-slotting which involves loosening only 25% of the soil surface area and addition of only one-sixth of the amount of lime required for complete soil amelioration, led to marked increases in yield (46% of the yield of repacked soil). Future field studies are required to evaluate the optimum limed-slot configurations required for different soils, crops and climatic regimes.


Soil Research ◽  
1995 ◽  
Vol 33 (1) ◽  
pp. 113 ◽  
Author(s):  
D Santoso ◽  
RDB Lefroy ◽  
GJ Blair

The objective of this study was to evaluate different methods, forms, and times of sulfur fertilizer application on a highly weathered soil under different rates of added lime and phosphorus. A pot experiment was conducted using a medium phosphorus (P) and sulfur (S) sorbing red earth (Haplohumult) of pH (1:1 H2O) 4.9 soil. The experiment was carried out using an incomplete factorial combination of two rates of lime (0 and the equivalent of 1.5 x exchangeable Al), three rates of phosphorus (0, 10 and 30 �g P/g soil), two sources of sulfur fertilizer [elemental S (ES) and gypsum (GS)], two methods of placement of sulfur fertilizer (mixed with or separated from the P fertilizer), and two different times of sulfur application (ail treatments applied as a basal dressing and a split application, half applied as a basal and half applied 14 days after planting). Three treatments with P only (0, 10 and 30 �g P/g soil) were added as a check for S responses Liming had no effect on crop yield or S and P dynamics. The experiment demonstrated that movement and leaching losses of applied S fertilizers, and thus their efficiency, were not only determined by soil properties but also influenced by form, rate and time of application of the S fertilizers, and their placement relative to the placement of P fertilizer. In addition, the mobility and effectiveness of S fertilizers was affected by the S requirement of the plants and the fate of P fertilizer application. Gypsum provided available S immediately and thus was advantageous for rapidly growing corn. However, the immediate availability of sulfate-S from gypsum resulted in considerably higher amounts of S being lost by leaching, ranging from 2.2% to 15.7% of the applied S. On the other hand, the application of elemental S resulted in lower S losses by leaching (<1%), but the amounts of S taken up by the plant from the elemental S fertilizer were also lower, especially if the fertilizer was applied in a split application. The mixing of S and P fertilizers increased the effectiveness of gypsum and, more particularly, elemental S fertilizer. Mixing 30 �g P/g soil with a single application of elemental S increased fertilizer S uptake by the whole plant from 2.7% to 12.4%. The advantage of mixing S and P fertilizers has important agronomic implications, and suggests that combined S/P fertilizers should be investigated further on weathered soils.


1965 ◽  
Vol 45 (2) ◽  
pp. 221-234 ◽  
Author(s):  
L. B. MacLeod ◽  
L. P. Jackson

Alfalfa, red clover, ladino clover, alsike clover, and birdsfoot trefoil were germinated in soil (pH 6.5) or in inert silica (8 mesh) and allowed to root in a [Formula: see text] Hoagland and Snyder's nutrient solution (pH 4.5) with 0, 0.5, 1, 2, 4, and 10 p.p.m. of added aluminum. Each species, germinated in silica, was also rooted in an unlimed acid soil (pH 4.6) and the same soil limed to a pH of 6.5.Concentration of aluminum ion remaining in solution was 0, 0.1, 0.2, 0.5, 1.0, and 2.0 p.p.m. Saturation extracts of the unlimed and limed soil contained 0.45 and 0.0 p.p.m respectively of aluminum ion in solution. The pH of the nutrient solutions with 0.5, 1, and 2 p.p.m. of added aluminum increased to 5.0 or higher in 24 hours while that with 4 and 10 p.p.m. of added aluminum remained relatively constant.Seedling weight and chemical composition of the tops and root portions varied significantly between species. Alfalfa and red clover showed the most vigorous rate of establishment, and yields were higher with 0.1 and 0.2 p.p.m. concentration of aluminum ion than with the zero treatment. Significant restriction of top and root growth of all species occurred with less than 1.0 p.p.m. of aluminum ion while 2.0 p.p.m. was toxic to root growth. Growth restrictions were more severe at 21 days after seeding than at the 28- or 32-day stages. Yield of tops and roots growing into unlimed acid soil were 73 and 71% respectively of those growing into limed soil. Aluminum taken up by the plant was concentrated in the roots and only with the concentration of aluminum at 2.0 p.p.m. was the content in the tops increased significantly. Phosphorus in the roots, which increased significantly with aluminum ion concentration, was apparently immobilized by aluminum. Percent Ca in the roots increased and in the tops decreased with increasing concentrations of aluminum. Content of K and Mg also varied with aluminum concentration.


2017 ◽  
Vol 8 (2) ◽  
pp. 590-593 ◽  
Author(s):  
A. C. C. Bernardi ◽  
G. M. Bettiol ◽  
G. G. Mazzuco ◽  
S. N. Esteves ◽  
P. P. A. Oliveira ◽  
...  

Knowledge on spatial variability of soil properties is useful for the rational use of inputs, as in the site specific application of lime and fertilizer. Crop-livestock-forest integrated systems (CLFIS) provide a strategy of sustainable agricultural production which integrates annual crops, trees and livestock activities on a same area and in the same season. Since the lime and fertilizer are key factors for the intensification of agricultural systems in acid-soil in the tropics, precision agriculture (PA) is the tool to improve the efficiency of use of these issues. The objective of this research was to map and evaluate the spatial variability of soil properties, liming and fertilizer need of a CLFIS. The field study was carried out in a 30 ha area at Embrapa Pecuária Sudeste in São Carlos, SP, Brazil. Soil samples were collected at 0–0.2 m depth, and each sample represented a paddock. The spatial variability of soil properties and site-specific liming and fertilizer needs were modeled using semi-variograms, the soil fertility information were modeled. Spatial variability soil properties and site specific liming and fertilizer need were modeled by kriging and inverse distance weighting (IDW) techniques. Another approach used was based on lime and fertilizer recommendation considering the paddocks as the minimum management unit. The results showed that geostatistics and GIS were useful tools for revealing soil spatial variability and supporting management strategies. Soil nutrients were used to classify the soil spatial distribution map and design site-specific lime and fertilizer application zones. Spatial analyses of crop needs and requirement can provide management tools for avoiding potential environmental problems, caused by unbalanced nutrient supplies.


2017 ◽  
Vol 29 (2) ◽  
pp. 199-220 ◽  
Author(s):  
Roghieh Hajiboland

AbstractTea (Camellia sinensis) is an important beverage crop cultivated in the tropics and subtropics under acid soil conditions. Increased awareness of the health-promoting properties of the tea beverage has led to an increase in its level of consumption over the last decades. Tea production contributes significantly to the economy of several tea-cultivating countries in Asia and Africa. Environmental constrains, particularly water deficiency due to inadequate and/or poorly distributed rainfall, seriously limit tea production in the majority of tea-producing countries. It is also predicted that global climate change will have a considerable adverse impact on tea production in the near future. Application of fertilizers for higher production and increased quality and quantity of tea is a common agricultural practice, but due to its environmental consequences, such as groundwater pollution, the rate of fertilizer application needs to be reconsidered. Cultivation of tea under humid conditions renders it highly susceptible to pathogens and pest attacks. Application of pesticides and fungicides adversely affects the quality of tea and increases health risks of the tea beverage. Organic cultivation as an agricultural practice without using synthetic fertilizers and other chemical additives such as pesticides and fungicides is a sustainable and eco-friendly approach to producing healthy tea. A growing number of tea-producing countries are joining organic tea cultivation programmes in order to improve the quality and to maintain the health benefits of the tea produced.


1982 ◽  
Vol 54 (1) ◽  
pp. 77-88
Author(s):  
Raili Jokinen

The effect of liming on the fate of magnesium given as either magnesium sulphate (200 mg Mg/3.9kg of soil) or two dolomitic limestones (1140 mg or 1320 mg Mg) in the soil and the values of these three as magnesium sources for ryegrass (Lolium multiflorum) were studied in pot experiment carried out over two growing seasons. The pH(CaCl2) of the very fine sand used as growth base was raised from its initial value of 4.9 to either 5.7 or 6.5 by the addition of calcitic limestone (12 g or 24 g limestone/3.9 kg of soil, respectively). The magnesium sources were compared at these three levels of soil acidity. At pH(CaCl2) 6.5 about 20 % of the magnesium applied as magnesium sulphate was converted into a form not extractable in 1 M neutral ammonium acetate. This not extractable magnesium appeared to be utilized slowly by ryegrass, which may indicate that magnesium bound in various Al-Mg compounds in limed soil is to some extent available to plants. At pH (CaCl2) 5.7 and 6.5 around 70 % and 85 %, respectively, of the magnesium derived from dolomitic limestones was not extractable in neutral ammonium acetate. The ryegrass was unable to utilize this not extractable magnesium during the two-year experimental period. On an acid soil the dolomitic limestones used were a more effective source of magnesium than magnesium sulphate, though on almost neutral soil there was little difference between the two, despite the large difference in the amount of magnesium applied.


2017 ◽  
Vol 4 (2) ◽  
pp. 107 ◽  
Author(s):  
Kurnia Dewi Sasmita ◽  
Iswandi Anas ◽  
Syaiful Anwar ◽  
Sudirman Yahya ◽  
Gunawan Djajakirana

<em>Using acid soil as a cacao seedling medium limits the seedling growth due to low fertility, thus necessitating soil ameliorant treatment to improve its chemical, physical, and biological quality. This study aimed to investigate the effect of cacao husks as organic fertilizer and biochar on chemical and biological properties of seedling media and cacao seedling growth, was conducted in Soil Biotechnology Laboratory and Soil Fertility Laboratory, Bogor Agricultural University and Pakuwon Experimental Station at Indonesian Industrial and Beverage Crops Research Institute (IIBCRI), Sukabumi, from June 2014 until February 2015. Completely randomized design (CRD) was used in the factorial treatment with three factors: (1) organic fertilizer treatment (without organic fertilizer and with organic fertilizer 10% of the weight of seedling media), (2) the types of biochar (rice husk and white albizia wood), and (3) the doses of biochar (0%, 1%, 2%, 4%, 6% of the weight of seedling media), with three replications respectively. Observation was on chemical and biological properties of the soil and seedling growth.  The results showed that organic fertilizer or albizia wood biochar application significantly improved C-organic and  C/N ratio. Increasing the dose of biochar or organic fertilizer application raised the pH, total N, and microbes respiration, whereas  without organic fertilizer was linearly able to improve total population of microbes but not the dry weight of cacao seedling. The combination of biochar and organic fertilizers increased the stem diameter and dry weight of cacao seedling.</em>


1969 ◽  
Vol 30 (3) ◽  
pp. 138-158
Author(s):  
J. A. Bonnet ◽  
Alfonso R. Riera

This paper reports the procedures followed for the chemical determinations of exchangeable calcium, magnesium, and manganese; and available phosphorus and iron in soils; and for the total amount in plants of each of those minerals mentioned. Spectrophotometric methods are given for magnesium and manganese in soils and plants; and for phosphorus and iron in plants including the transmittance-concentration and spectral-transmittance curves for each of these elements. Photocolorimetric methods are also given for available iron and phosphorus in soils with their corresponding curves. This paper reports also changes of the minerals calcium, magnesium, manganese, phosphorus and iron in an acid soil, 15 and 23 months after liming. It also reports changes of these minerals in each of five crops of a mixture of Para grass Panicum purpurascens, and Carib grass Eriochloa polystachya, grown in the unlimed and limed soil. The yield of green grass is also reported for each crop.


2018 ◽  
Vol 24 (2) ◽  
Author(s):  
SUPRIYA DIXIT ◽  
R. K. GUPTA

Currently, a real challenge for the workers in the agricultural research field is to stop or reduce the use of expensive agrochemicals/ chemical fertilizers which are hazardous to the environment as well as human health. Present study was aimed to improve the growth and obtain optimum yield of Vigna crop with eco-friendly, non-toxic way and to reduce the use of agrochemical/chemical fertilizer application in agricultural activities. A pot experiment was conducted to study the effect of chemical fertilizer (DAP) and biofertilizer ( Rhizobium strain) separately and in combination on seed germination and seedling growth (at 30 days) based on morphological parameters such as seedling length (cm), fresh weight (g), dry weight (g) and leaf area (cm)2 of Vigna radiata (L.) Wilczek. After one month (30 Days) observations, it was found that seedling length, fresh and dry weights and leaf area were maximum in T4 and minimum in T15, T7 and T8 favored improved seedling length and leaf area whereas T7, T8, and T9 favored improved fresh and dry weights as compared to control.


Sign in / Sign up

Export Citation Format

Share Document