scholarly journals DESAIN KEMASAN SEKUNDER PADA PRODUK PROL TAPE DENGAN METODE QUALITY FUNCTION DEPLOYMENT (QFD) (Studi Kasus di UD. Purnama Jati, Kabupaten Jember)

2021 ◽  
Vol 15 (01) ◽  
pp. 11
Author(s):  
Ida Bagus Suryaningrat ◽  
Nidya Shara Mahardika ◽  
Mela Eriana Firlanarosa

Packaging refers to an object to protect and secure certain products within the package as well as giving a particular image to persuade the customers. The research objectives were to identify customers’ desires and satisfaction levels to prol tape product packaging using the quality function deployment (QFD) method, designing packages, determining the type of packaging, and determining the compressive strength of the packaging using a universal testing machine (UTM). The research findings were 4 important attributes found for secondary packaging, namely the attributes of strength, appearance, price, and protection. Based on the attributes, the researcher designed a new secondary packaging using the RSC (regular slotted container) type of packaging consisting of two parts; BC flute type for outer packaging and B flute type for inner packaging. Meanwhile, the old secondary packaging only consisted of one part, namely B flute type for outer packaging. According to the compressive strength test results, the new packaging has a compressive strength value of 189.6 kgf with a maximum stack number of 40 stacks, and the old packaging has a compressive strength value of 82.7 kgf with a maximum stack number of 18 stacks. Keywords: compressive strength, packaging, prol tape, QFD

2007 ◽  
Vol 21 (3) ◽  
pp. 204-208 ◽  
Author(s):  
André Mallmann ◽  
Jane Clei Oliveira Ataíde ◽  
Rosa Amoedo ◽  
Paulo Vicente Rocha ◽  
Letícia Borges Jacques

The purpose of this study was to evaluate the compressive strength of two glass ionomer cements, a conventional one (Vitro Fil® - DFL) and a resin-modified material (Vitro Fil LC® - DFL), using two test specimen dimensions: One with 6 mm in height and 4 mm in diameter and the other with 12 mm in height and 6 mm in diameter, according to the ISO 7489:1986 specification and the ANSI/ADA Specification No. 66 for Dental Glass Ionomer Cement, respectively. Ten specimens were fabricated with each material and for each size, in a total of 40 specimens. They were stored in distilled water for 24 hours and then subjected to a compressive strength test in a universal testing machine (EMIC), at a crosshead speed of 0.5 mm/min. The data were statistically analyzed using the Kruskal-Wallis test (5%). Mean compressive strength values (MPa) were: 54.00 ± 6.6 and 105.10 ± 17.3 for the 12 mm x 6 mm sample using Vitro Fil and Vitro Fil LC, respectively, and 46.00 ± 3.8 and 91.10 ± 8.2 for the 6 mm x 4 mm sample using Vitro Fil and Vitro Fil LC, respectively. The resin-modified glass ionomer cement obtained the best results, irrespective of specimen dimensions. For both glass ionomer materials, the 12 mm x 6 mm matrix led to higher compressive strength results than the 6 mm x 4 mm matrix. A higher variability in results was observed when the glass ionomer cements were used in the larger matrices.


2021 ◽  
Vol 15 (2) ◽  
pp. 129-132
Author(s):  
Mohammad Forough Reyhani ◽  
Sheida Hosseinian Ahangarnezhad ◽  
Negin Ghasemi ◽  
Amin Salem Milani

Background. Calcium-enriched mixture (CEM) cement has been introduced and marketed as a biomaterial for use in furcal perforation repair and apexogenesis procedures, in which the compressive strength that indicates the material’s resistance against crushing is of utmost importance. This study evaluated the effect of various liquid-to-powder ratios on CEM cement’s compressive strength. Methods. One gram of the cement was mixed with 0.5, 0.34, and 0.25 mL of demineralized water and transferred to stainless steel molds (6 and 4 mm in height and diameter, respectively). Five cells in the mold were considered for each group. The compressive strength test was conducted using the universal testing machine after incubating for seven days under 95% humidity at 37°C. One-way ANOVA was applied for data analysis at P≤0.05 significance level. Results. The mean compressive strength in the liquid-to-powder ratios of 0.5, 0.34, and 0.25 were 3.4456, 3.2960, and 3.3485, respectively, with no significant differences between them. Conclusion. Under this study’s limitations, changing the liquid-to-powder ratio did not affect CEM cement’s compressive strength.


2018 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Sugeng Hendik ◽  
Dhino Teguh

ABSTRAK Penelitian ini adalah penelitian eksperimental yang dilakukan di laboratorium, untuk mengetahui perbandingan pengukuran kekuatan beton pada kegiatan pengabdian masyarakat di Laboratorium Struktur dan Bahan Konstruksi Fakultas Teknik Universitas Brawijaya. Pengukuran kekuatan beton bisa menggunakan metode merusak dan tidak merusak. Tujuan dari penelitian ini untuk mendapatkan konstanta pengali nilai hasil pengujian Hammer Test, sehingga hasilnya bisa mendekati hasil pengujian dengan menggunakan Mesin Uji Tekan. Adapun variabel penelitian adalah jenis sampel dan metode pengujian. Jumlah sampel untuk setiap umur beton adalah 20 silinder dan 20 kubus, sehingga total adalah 40 buah sampel beton, setelah itu dilakukan pengujian kekuatan dengan menggunakan metode non destruktif dan dengan bahan yang sama dilakukan pengujian kuat tekan dengan metode destruktif. Hasil penelitian ini menunjukkan bahwa pengujian dengan menggunakan hammer test nilainya lebih rendah dibandingkan dengan pengujian dengan Compression Machine dan didapatkannya konstanta pengali sebesar 0,88. Sehingga dengan menggunakan nilai hasil pengujian dengan alat hammer test estimasi kekuatan beton bisa diukur terlebih dahulu tanpa menggunakan metode Destruktif Kata-kata kunci : pengujian merusak dan tidak merusak, mesin uji tekan, uji kekerasan ABSTRACT This research is experimental research conducted at laboratory, to find the comparison of strength measurement of concrete in Community Service Activities at Laboratory of Structures and Construction Materials can use the method of destructive and non-destructive. The main purpose of this research is to get the value of multiplier constant from the test result of Hammer Test, so the result can come near to the test result by using Compression Machine. The research variable are; sample type (cube of 15 x 15 and cylinder of 15 x 30), testing method (hammer test vs Universal testing machine). The number of concrete cylinder sample (Ø 15 cm x 30cm) for each concrete age is 20 of cylinder and 20 of cube, so the total is 40 pcs of concrete sample, after that, compressive strength test is performed by using method of non-destructive and by the same materials, compressive strength test is performed by using method of destructive. The result of this research is prove that value test by using Hammer Test is lower that using Compression Machine and the obtained of multiplier constant is 0.88. So by using value of test result with hammer test, estimation of concrete strength can be measured in advance without using method of destructive. Keywords : destructive test, non-destructive test, universal testing machine, hammer test


2018 ◽  
Author(s):  
erniati ◽  
muhammad wihardi tjaronge ◽  
Ulva ria irfan

Indonesia is the largest archipelago in the world, so it has much territory that the quality of the source water is not qualified as mixing water in construction. Besides, construction of concrete in areas that are likely quantity of water or fresh water is very minimal or even nothing then the sea water cannot be avoided in mixing concrete. This research was an experimental study, the samples for compressive strength test are cylindrical premises size of 10 mm×20 mm. The porosity relation, compressive power, age and model of porosity relationship with SCC concrete compressive strength which using sea water is discussed in this paper. Compressive strength testing is following the standard ASTM 39/C 39-99. Universal Testing Machine (UTM) was used in the testing of compressive strength. A test specimen for porosity created by taking part of the cylinder and then slashed with a size of approximately 2 cm×3 cm with a 0.003 mm thick. The type and pore size and porosity were analyzed by using a polarizing petrography microscope Olympus BX 51-P. The result of the research was increased the compressive strength and density of microstructures in line with the decrease in porosity and pore size of concrete and concrete age. Compressive strength relations (σ ss ) and porosity (p ss ) the SCC used seawater can be approximated equation σ ss = σ o (1-p)K, with σ o = 119.6 and K = 7.502.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1303
Author(s):  
Michael Seidenstuecker ◽  
Thomas Schmeichel ◽  
Lucas Ritschl ◽  
Johannes Vinke ◽  
Pia Schilling ◽  
...  

This work aimed to determine the influence of two hydrogels (alginate, alginate-di-aldehyde (ADA)/gelatin) on the mechanical strength of microporous ceramics, which have been loaded with these hydrogels. For this purpose, the compressive strength was determined using a Zwick Z005 universal testing machine. In addition, the degradation behavior according to ISO EN 10993-14 in TRIS buffer pH 5.0 and pH 7.4 over 60 days was determined, and its effects on the compressive strength were investigated. The loading was carried out by means of a flow-chamber. The weight of the samples (manufacturer: Robert Mathys Foundation (RMS) and Curasan) in TRIS solutions pH 5 and pH 7 increased within 4 h (mean 48 ± 32 mg) and then remained constant over the experimental period of 60 days. The determination surface roughness showed a decrease in the value for the ceramics incubated in TRIS compared to the untreated ceramics. In addition, an increase in protein concentration in solution was determined for ADA gelatin-loaded ceramics. The macroporous Curasan ceramic exhibited a maximum failure load of 29 ± 9.0 N, whereas the value for the microporous RMS ceramic was 931 ± 223 N. Filling the RMS ceramic with ADA gelatin increased the maximum failure load to 1114 ± 300 N. The Curasan ceramics were too fragile for loading. The maximum failure load decreased for the RMS ceramics to 686.55 ± 170 N by incubation in TRIS pH 7.4 and 651 ± 287 N at pH 5.0.


2014 ◽  
Vol 566 ◽  
pp. 158-163 ◽  
Author(s):  
A. Yosimoto ◽  
Hidetoshi Kobayashi ◽  
Keitaro Horikawa ◽  
Keiko Watanabe ◽  
Kinya Ogawa

In order to clarify the effect of strain rate and test temperature on the compressive strength and energy absorption of polyimide foam, a series of compression tests for the polyimide foam with two different densities were carried out. By using three testing devices, i.e. universal testing machine, dropping weight machine and sprit Hopkinson pressure bar apparatus, we performed a series of compression tests at various strain rates (10-3~103s-1) and at several test temperatures in the range of room temperature to 280 ̊C. At over 100 s-1, the remarkable increase of flow stress was observed. The negative temperature dependence of strength was also observed.


Author(s):  
Edward Dinoy ◽  
Yohanes Gilbert Tampaty ◽  
Imelda Srilestari Mabuat ◽  
Joseph Alexon Sutiray Dwene

The compressive strength test is one of the technical properties or compressive strength tests that are commonly used in rock mechanics to determine the collapse point or the elasticity of rock against maximum pressure. The rock collapse point is a measure of the strength of the rock itself when the rock is no longer able to maintain its elastic properties. The purpose of this test is to find out how long the rock maintains its strength or elasticity properties when pressure is applied, and to find out the difference between the strength of compact rock and rock that has fractures when pressure is applied. Rocks that have fractures will break more easily or quickly when pressure is applied compared to compact rocks. This analysis is carried out by comparing the rock strength of each sample, both those that have fractures and compact rocks. To find out these differences, laboratory testing was carried out. The test results show the value (compressive strength test 57.76 MPa), (elastic modulus 5250.000MPa), (Poisson ratio 0.05) and the average value of rock mechanical properties test (axial 0.91), (lateral-0.279), and (volumetric 0.252) . Based on the test results above, it shows that rocks that have fractures will break more easily when pressure is applied, compared to compact rocks that have a long time in the uniaxial compressive strength test.


2020 ◽  
Vol 323 ◽  
pp. 01018
Author(s):  
Wei-Ting Lin ◽  
Lukáš Fiala ◽  
An Cheng ◽  
Michaela Petříková

In this study, the different proportions of co-fired fly ash and ground granulated blast-furnace slag were used to fully replace the cement as non-cement blended materials in a fixed water-cement ratio. The recycled fine aggregates were replaced with natural fine aggregates as 10%, 20%, 30%, 40% and 50%. The flowability, compressive strength, water absorption and scanning electron microscope observations were used as the engineered indices by adding different proportions of recycled fine aggregates. The test results indicated that the fluidity cannot be measured normally due to the increase in the proportion of recycled fine aggregates due to its higher absorbability. In the compressive strength test, the compressive strength decreased accordingly as the recycled fine aggregates increased due to the interface structure and the performance of recycled aggregates. The fine aggregates and other blended materials had poor cementation properties, resulting in a tendency for their compressive strength to decrease. However, the compressive strength can be controlled above 35 MPa of the green non-cement blended materials containing 20% recycled aggregates.


2019 ◽  
Vol 1363 ◽  
pp. 012095 ◽  
Author(s):  
Abdurrozzaq Hasibuan ◽  
Luthfi Parinduri ◽  
Oris Krianto Sulaiman ◽  
Abdul Rahman Suleman ◽  
Adek Khadijatul Z Harahap ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Pandila Diahtaradipa Ganantrya ◽  
Amna Hartiati ◽  
Cokorda Anom Bayu Sadyasmara

Consumer satisfaction in a restaurant can be improved through good product quality in accordance with the wishes and needs of consumers. Improving product quality is an important problem for a restaurant because it is beneficial for restaurants and consumers. The purpose of this study are: (1) to know the attributes of fried chicken that are considered important by consumers in the original Prambanan fried chicken restaurant, (2) to measure the level of importance of the quality of fried chicken products, (3) to measure the level of consumer satisfaction with the quality of fried chicken products and (4) knowing the strategy to improve the quality of fried chicken products. This study uses the Quality Function Deployment (QFD) method. The results of this study indicate that there are 11 attributes of product quality that are considered important by consumers with very important criteria. The biggest value of consumer interest is the attribute of fried chicken taste of 3.78. On the value of consumer satisfaction attributes of fried chicken chili variants have the smallest value of 3.08 with the highest IR of 1.30 need to provide and improve the quality of the product on the attributes of the fried chicken chili sauce. Keywords: fried chicken, product quality, customer satisfaction, quality function deployment (QFD)


Sign in / Sign up

Export Citation Format

Share Document