scholarly journals The thermal annealing effect on Crystal Structure and Morphology of Titanium Dioxide (TiO2) powder

2014 ◽  
Vol 15 (1) ◽  
pp. 37
Author(s):  
Edy Supriyanto ◽  
Ashanal Holikin ◽  
Suwardiyanto Suwardiyanto

In this research, crystal structure and morphology of TiO2 (powder) has been observed. TiO2 (powder) was heated by furnace unit at temperature 200 °C - 400 °C to obtain the relation of temperature influences to crystallty and morphology of TiO2. Structural characterization has been done using XRD whereas morphology using Scanning Electron Microscope (SEM) method. The result of this research showed that form of the TIO2 structure was polycrystalline in which mostly dominated by crystal structure (101). Scherrer method used to obtain information that at temperature 300oC, TiO2 has a real small particle size less than 10 nm and large pore size to serve the purpose of photocatalyst material. Keywords : Crystal structure,crystalline size, photocatalyst, morphology, SEM, TiO2.  

2018 ◽  
Vol 197 ◽  
pp. 02010
Author(s):  
Mangasi A M ◽  
Iwan Sugihartono ◽  
Teguh B P ◽  
Sitti Ahmiatri Saptari ◽  
Erfan Handoko

In order to investigate the crystal structure and morphology of perovskite manganite materials, we have been successfully synthesized LaMnO3 and La0,8Ca0,2MnO3 systems through ultrasonic mixing method. The application of these materials is the alternative cooler technology beside freon gas using with residual emission gas. Stoichiometric mixture of La2O3, MnCO3, and CaO with more than 95 % purity were be prepared by ultrasonic mixing 40 kHz 60 watts for 30 minutes to result homogen mixtures. The samples were calcinated at 800°C for 1 h and sintered at 1100°C for 3 h. The structure of the samples was examined by X-ray diffractometer (XRD) Phillips and result as single phase of perovskite manganite materials. Morphology was studied using a 5310LV Jeol scanning electron microscope (SEM) that show the same grains of perovskite manganite material. While Ca substituted for La in the sample, the grain size decreases with decreasing the volume of cell units and finally the particle size of La0.8Ca0.2MnO3 phase decreases.


2003 ◽  
Vol 17 (04n06) ◽  
pp. 899-904 ◽  
Author(s):  
A. VECCHIONE ◽  
M. GOMBOS ◽  
C. TEDESCO ◽  
A. IMMIRZI ◽  
L. MARCHESE ◽  
...  

NdSr 2 RuCu 2 O x material has been prepared as polycrystalline powder by solid state reaction. The compound has been investigated by synchrotron x-ray powder diffraction and scanning electron microscopy. The experimental results show that the average crystal structure is a disordered cubic perovskite with Nd and Sr cations occupying the same site and the same substitution is found for Cu and Ru atoms. A comparison between the crystal structure and morphology of this compound and the superconducting tetragonal GdSr 2 RuCu 2 O 8 is also discussed.


Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 305 ◽  
Author(s):  
Yan Zhang ◽  
Hui Zhang ◽  
Fang Wang ◽  
Li-Xia Wang

The ginger essential oil/β-cyclodextrin (GEO/β-CD) composite, ginger essential oil/β-cyclodextrin/chitosan (GEO/β-CD/CTS) particles and ginger essential oil/β-cyclodextrin/chitosan (GEO/β-CD/CTS) microsphere were prepared with the methods of inclusion, ionic gelation and spray drying. Their properties were studied by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermo-gravimetry analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The results showed that the particle size of GEO/β-CD composite was smaller than that of β-CD and GEO/β-CD/CTS particles were loose and porous, while the microsphere obtained by spray drying had certain cohesiveness and small particle size. Besides, results also indicated that β-CD/CTS could modify properties and improve the thermal stability of GEO, which would improve its application value in food and medical industries.


2010 ◽  
Vol 03 (03) ◽  
pp. 185-188 ◽  
Author(s):  
XIAOYUN ZHAN ◽  
ZHAOHUI LI ◽  
JIAOJUN TANG ◽  
QIZHEN XIAO ◽  
GANGTIE LEI ◽  
...  

Highly crystallized and microsized particles of LiNi0.5Mn1.5O4 spinels with different morphologies have been successfully synthesized using polystyrene (PS) as the sacrificial template, and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurement. The spinels obtained at 700°C possess abundant porosity with about 200 nm in diameter, while the spinels calcined at 900°C exhibit a well-defined polyhedral morphology with particle size ranged from 0.2 to 2 μm. The materials prepared at 900°C display an excellent cycling performance due probably to better crystallinity and small particle size.


2013 ◽  
Vol 860-863 ◽  
pp. 956-959
Author(s):  
Xing Hua Liang ◽  
Lin Shi ◽  
Yu Si Liu ◽  
Tian Jiao Liu ◽  
Chao Chao Ye ◽  
...  

The High Potential Material Lini0.5Mn1.5O4 was Synthesized via Solid-State Reaction.The Surface Morphology and Particle Size of the Sample were Observed by Scanning Electron Microscope(SEM).The Crystal Structure of the Sample was Collected and Analyzed through X-Ray Diffractometry(XRD).The Sample was Charaterized by Charge-Discharge Tests.Results Indicated that the Cycling Retention Rate was about 80%,after being Charge-Diacharged at a Rate of 0.1C in a Voltage of 3.45-4.77V for 10 Times.Compared with Limn2O4,LiNi0.5Mn1.5O4 has good cycle performance.Both of LiNi0.5Mn1.5O4 structure were space group of Fd3m.


2009 ◽  
Vol 23 (08) ◽  
pp. 2093-2099 ◽  
Author(s):  
J. KAEWKHAO ◽  
N. UDOMKAN ◽  
W. CHEWPRADITKUL ◽  
P. LIMSUWAN

In this study, the effect of bismuth content on the crystal structure and morphology of bismuth silicate ( BSO:Bi 4 Si 3 O 12) polycrystals were investigated with X-ray diffraction (XRD) analysis and scanning electron microscope (SEM). BSO materials have been successfully prepared by the solid-state reaction. The BSO phase was crystallized at 950°C for 12 h. In summary, 10% of excess bismuth was found to be the optimum composition with respect to crystallization, morphology, and grain size.


2015 ◽  
Vol 71 (2) ◽  
pp. 89-92
Author(s):  
Ali Hejrani-Dalir ◽  
Masumeh Tabatabaee ◽  
Ali Sheibani

2-Amino-3-hydroxypyridinium dioxido(pyridine-2,6-dicarboxylato-κ3O2,N,O6)vanadate(V), (C5H7N2O)[V(C7H3NO4)O2] or [H(amino-3-OH-py)][VO2(dipic)], (I), was prepared by the reaction of VCl3with dipicolinic acid (dipicH2) and 2-amino-3-hydroxypyridine (amino-3-OH-py) in water. The compound was characterized by elemental analysis, IR spectroscopy and X-ray structure analysis, and consists of an anionic [VO2(dipic)]−complex and an H(amino-3-OH-py)+counter-cation. The VVion is five-coordinated by oneO,N,O′-tridentate dipic dianionic ligand and by two oxide ligands. Thermal decomposition of (I) in the presence of polyethylene glycol led to the formation of nanoparticles of V2O5. Powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of the synthesized powder.


2012 ◽  
Vol 562-564 ◽  
pp. 482-485
Author(s):  
Zeng Gang Li ◽  
Zeng Yong Chu ◽  
Yong Jiang Zhou ◽  
Hai Feng Cheng

La1-xSrxMnO3 (LSMO) (x=0.1, 0.2, 0.3, 0.4)powders were synthesized by high temperature solid phase method, and the crystal structure and morphology were characterized by XRD and SEM. Results indicated that the pure perovskite type LSMO could be obtained after sintered at the temperature of 1000°C for 6h. The average particle size of the powders decreases with the increasing concentration of Strontium.


2017 ◽  
Vol 5 (10) ◽  
pp. 4879-4885 ◽  
Author(s):  
Junpo Guo ◽  
Jie Wang ◽  
Zexing Wu ◽  
Wen Lei ◽  
Jing Zhu ◽  
...  

Carbon sphere supported MoO2, MoC and Mo2C materials have been synthesized via a simple two-step method. Mo2C/C exhibits a superior electrocatalytic performance and stability for the HER in both acid and basic media due to its excellent crystal structure, enlarged surface area, high electronic conductivity and ultra-small particle size.


2013 ◽  
Vol 785-786 ◽  
pp. 475-479 ◽  
Author(s):  
Seithzan Turganbay ◽  
S.B. Aidarova ◽  
N.E. Bekturganova ◽  
G.K. Alimbekova ◽  
K.B. Musabekov ◽  
...  

This work presents the results of obtaining the sulfur nanoparticles, which can be used in agriculture as a fungicide. Sulfur nanoparticles were obtained by modifying the surface of sulfur using various surfactants including cetyltriammoniumbromide (CTAB), sodium dodecylbenzene sulfanate (SDBS) and Triton X-100 (TX-100). The size, crystal structure and morphology of sulfur nanoparticles were determined by methods as laser size analyzing (LSA), X-ray diffraction (XRD), scanning electron microscope (SEM). It was found that the nanoparticles had a sulfur monoclinic β-form struture, and their average size was in the range of 1000-1500 nm.


Sign in / Sign up

Export Citation Format

Share Document