scholarly journals Preparation and Characterization of Polysulfone/Celullose Acetate (PSF/CA) Blend Membrane

2019 ◽  
Vol 20 (1) ◽  
pp. 25
Author(s):  
Intan Syahbanu ◽  
Bambang Piluharto ◽  
Syahrul Khairi ◽  
S. Sudarko ◽  
Toto Hermanto

Blend polysulfone (PSF)/cellulose acetate (CA) membranes have prepared by phase inversion method. In here, CA was prepared from bacterial cellulose by acetylation reaction. Various temperature of coagulation bath were used as variable to investigated water uptake, water flux, porosity and thermal properties of membranes. As comparison, the CA commercial (CCA) was also investigated with the same parameters. As the result, the functional group analysis by FTIR show that CA has successfully prepared from bacterial cellulose. The parameters include water uptake, water flux and porosity have the similar trend. The parameters increase with increasing of temperature of coagulation bath. The other hand, CCA membrane have similar trend to CA membranes for parameter of water water uptake, water flux and porosity. However, CCA membrane is higher than CA membranes for all parameters. Thermal analysis by Differential Scanning (DSC) showed that all blend membranes with different temperature of coagulation bath have single transition glass temperature (Tg) that indicated that molecular homogeneity. Keywords: blend membrane, phase inversion, coagulation bath, water flux, porosity.

2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Muhamad Fikri Shohur ◽  
Zawati Harun ◽  
W. J. Lau ◽  
Muhamad Zaini Yunos ◽  
Mohd Riduan Jamalludin

One of the big challenges in developing a good asymmetric membrane  is macrovoid formation that leads to reduction of rejection value.  The most common method to reduce or suppress macrovoid formation is by addition of controlled solvent to the coagulation bath. Therefore, the effect of difference coagulants based on dissolved KCl (monovalent) and dissolved Na2SO4(divalent) with different concentration onto asymmetric Polysulfone (PSf) ultrafiltration membrane was investigated in this work. The PSf ultrafiltration membranes were prepared by using phase inversion method using these two immerse aqueous solutions. The performances of membranes were evaluated via pure water flux (distilled water) and solute rejection (humic acid). Results on the cross section revealed that the structure of membrane show a straight pattern of bigger finger-like pore structure from top to bottom layer tend to reduce with at the same time the diameter of finger-like pore structure  also increased, as salt medium of coagulant increases. These obviously shown by permeation values for both salt mediums were higher compared to without salt coagulant. This reduction of finger-like structure at bottom layer occurred along together with the formation of sponge shape structure. The growth of thick sponge shape is strongly influence by kinetic phase inversion of salt coagulant that also creates resistance to permeation mechanism. However the intense salt coagulant medium can cause the bigger sponge structure that will slightly reduce rejection and increase the permeation.  This was proved by the rejection of KCl medium started to increase at 1-3% but slightly reduced at 4%. Based on the result analysis demonstrated that the ideal membrane with highest rejection and good permeation values was membrane immersed into 1% Na2SO4 coagulation medium.


2015 ◽  
Vol 754-755 ◽  
pp. 44-48 ◽  
Author(s):  
Siti Hajaratul Akma Abdul Hadi ◽  
Hilmi Mukhtar ◽  
Hafiz Abdul Mannan ◽  
Thanabalan Murugesan

The synthesis of polyethersulfone (PES)/polyvinyl acetate (PVAc) blend membrane was successfully developed by dry phase inversion method. The membrane morphology characterized using Field Emission Electron Microscope (FESEM) showed both polymers were homogeneously mixed and a dense structure was formed. A shift in characteristic peak for most chemical groups was observed in blend membrane as analyzed by Fourier Transform Infrared (FTIR) analysis which suggests the presence of molecular interaction between the blend polymers. The permeability of carbon dioxide (CO2) and methane (CH4) gases was recorded at a constant pressure of 10 bars and room temperature. The permeability across polymer blend membrane showed better performance as compared with native polymer membrane.


2013 ◽  
Vol 746 ◽  
pp. 390-393
Author(s):  
Qiong Zhi Gao ◽  
Hong Qiang Li ◽  
Xing Rong Zeng

In this study, polyvinylidene fluoride (PVDF) composite ultrafiltration membranes were prepared by a phase inversion method, N,N-dimethylacetamide (DMAc) was used as solvent and polyvinylpyrrolidone (PVP) was used as dispersant, nanoTiO2 and AgNO3 were used as addictive materials. With different doping content of nanoTiO2 and silver ions, those hybrid films have different functions and structure. The basic performance and photocatalytic properties of those ultrafiltration membranes were studied in detail. The experiment results show that adding nanosized TiO2 particles will make the porosity of PVDF membrane increase, adding silver ion with low content can not improve water flux and porosity of membranes, however, nanoTiO2 and silver ions doping together can effectively improve the photocatalytic degradation rate.


2020 ◽  
Vol 15 ◽  
pp. 155892502092317
Author(s):  
Fahad S Al-Mubaddel ◽  
Hamad S AlRomaih ◽  
Mohammad Rezaul Karim ◽  
Monis Luqman ◽  
Maher M Al-Rashed ◽  
...  

The present study reports on the preparation of novel nanofibre membranes from the thermoplastic polymer polyvinylidene fluoride coated with chitosan to enhance membrane properties such as hydrophilicity, mechanical properties, water flux and salt rejection. Initially, a supporting layer was produced from polyvinylidene fluoride using phase inversion methods, followed by being coated with chitosan using either electrospinning or immersion methods. Two types of fabricated membranes with different coating methods were characterized and tested for physical and chemical performance using field-emission scanning electron microscopy, tensile tests, permeation tests (water flux and salt rejection) and contact angle measurements. It was found that the support membrane (polyvinylidene fluoride) produced by the phase inversion method that was coated with chitosan using electrospinning showed better performance, with a salt rejection up to 70% for MgSO4, a decreased the contact angle (52°) and improved the elongation at the breaking point (~82%).


2012 ◽  
Vol 557-559 ◽  
pp. 704-707
Author(s):  
Hui Juan Chu ◽  
Hong Liang Wei ◽  
Jing Zhu ◽  
Bao Ku Zhu ◽  
You Yi Xu

In order to explore low dielectric polymeric materials, two types of cellular polyimide films with different dianhydride units were prepared by phase inversion method, and their dielectric properties were investigated. Polyimide films with various cellular structures were obtained by controlling coagulation bath compositions and temperatures. The effects of chemical structures, cellular structures on dielectric property of cellular polyimide films were studied. The results showed that all of the cellular polyimide films had lower dielectric constants than the polymer matrix. The dielectric properties were influenced dominantly by the morphologies of the films. Cellular Polyimide films filled with uniform small cellular structures behaved excellent dielectric property compared with those large-pore cellular films. These findings would provide potential application for cellular polyimide films in microelectronic devices.


2014 ◽  
Vol 1052 ◽  
pp. 8-13
Author(s):  
Shu Hong Jiang ◽  
Jun Wu ◽  
Hong Zhong Zhou ◽  
Chuan Wei Jiang ◽  
Jun Wang

In order to improve the performance of Poly(vinyl chloride)(PVC)/ polyethersulfone (PES) blended membranes, cellulose acetate (CA) was used as a hydrophilic enhancer to blend with PVC and PES for membrane preparation by phase inversion method. In this study, the results of equilibrium water content (EWC), contact angle and X-ray photoelectron spectroscopy (XPS) confirmed the addition of CA could effectively improve the hydrophilicity of PVC/PES blended membrane. It was also found that water flux of PVC/PES/CA blended membranes increased with the increase of CA concentration.


2012 ◽  
Vol 18 (3) ◽  
pp. 385-398 ◽  
Author(s):  
Reza Abedini ◽  
Mahmoud Mousavi ◽  
Reza Aminzadeh

In this study, asymmetric pure CA and CA/ TiO2 composite membranes were prepared via phase inversion by dispersing TiO2 nanopaticles in the CA casting solutions induced by immersion precipitation in water coagulation bath. TiO2 nanoparticles, which were synthesized by the sonochemical method, were added into the casting solution with different concentrations. Effects of TiO2 nanoparticles concentration (0 wt. %, 5wt.%, 10wt.%, 15wt.%, 20wt.% and 25wt.%) and coagulation bath temperature (CBT= 25?C, 50?C and 75?C) on morphology, thermal stability and pure water flux (PWF) of the prepared membranes were studied and discussed. Increasing TiO2 concentration in the casting solution film along with higher CBT resulted in increasing the membrane thickness, water content (WC), membrane porosity and pure water flux (PWF), also these changes facilitate macrovoids formation. Thermal gravimetric analysis (TGA) shows that thermal stability of the composite membranes were improved by the addition of TiO2 nanopaticles. Also TGA results indicated that increasing CBT in each TiO2 concentration leads to the decreasing of decomposition temperature (Td) of hybrid membranes.


e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Hui Li ◽  
Guo-li Gong ◽  
Tai-sheng Gong

Abstract A series of blend membranes were prepared by immersion precipitation phase inversion method using hydroxypropylcellulose and polyacrylonitrile as raw materials. The effects of casting conditions on membrane’s characterization were studied. The properties of resulting blend membranes were that water flux decreased from 489 L·h-1·m-2 to 312 L·h-1·m-2 ; retention rate increased from 80.1% to 91.8%; and corresponding porosity presented increasing trend but changed little within the range of casting solution concentrations from 10 wt % to 16 wt %. The greater the mass fraction of HPC in casting solution, the greater the water flux of blend membranes. Prolonging the atmosphere exposing time, water flux increased from 268 L·h-1·m-2 about 20s to 372 L·h-1·m-2 about 60 s, then decreased to 340 L·h-1·m-2 about 75s. In addition, retention rate decreased from 91.2% to 81.3%. Porosity tend to decrease but changed a little. With the coagulation bath temperature rising, water flux of blend membranes increased from 306 L·h-1·m-2 about 20 0C to 429 L·h-1·m-2 about 35 0C, and corresponding retention rate decreased from 87.9% to 82.5%, porosity decreased from 80.23% to 68.26%.


2021 ◽  
Vol 6 (2) ◽  
pp. 55-60
Author(s):  
Vivia Maulida Alfianti ◽  
◽  
Munasir Munasir ◽  

Polysulfones are hydrophobic which can reduce membrane permeability. Permeability can be increased through the application of hydrophilic materials such as GO-Fe3O4 to the polysulfone membrane so that the membrane is hydrophilic. The riset purpose to determine the effect of the percentage weight of different material compositions on the hydrophilicity properties of the polysulfone membrane. Membrane fabrication is carried out using the phase inversion method where the polymer solution is molded in a place and immersed in a coagulation bath containing non-solvent. This solvent exchange causes the polymer to form a solid matrix and become a membrane. The results showed that GO particles were successfully doped with Fe3O4 material shown by XRD analysis at a peak of 35.61˚ with a magnetite phase, while FTIR analysis showed that there was an absorption band characteristic of Fe-O streching vibrations. The results of the contact angle test on the GO-Fe3O4/PSF membrane 0.75 wt per cent were around 73.17˚ which showed the smallest hydrophobic value and the membrane surface morphology had an average pore size of 333.61 nm so that the addition of GO-Fe3O4 composites could increase membrane hydrophilicity.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4436
Author(s):  
Aulia Chintia Ambarita ◽  
Sri Mulyati ◽  
Nasrul Arahman ◽  
Muhammad Roil Bilad ◽  
Norazanita Shamsuddin ◽  
...  

Polyethersulfone (PES) is the most commonly used polymer for membrane ultrafiltration because of its superior properties. However, it is hydrophobic, as such susceptible to fouling and low permeation rate. This study proposes a novel bio-based additive of dragonbloodin resin (DBR) for improving the properties and performance of PES-based membranes. Four flat sheet membranes were prepared by varying the concentration of DBR (0–3%) in the dope solutions using the phase inversion method. After fabrication, the membranes were thoroughly characterized and were tested for filtration of humic acid solution to investigate the effect of DBR loading. Results showed that the hydrophilicity, porosity, and water uptake increased along with the DBR loadings. The presence of DBR in the dope solution fastened the phase inversion, leading to a more porous microstructure, resulted in membranes with higher number and larger pore sizes. Those properties led to more superior hydraulic performances. The PES membranes loaded with DBR reached a clean water flux of 246.79 L/(m2·h), 25-folds higher than the pristine PES membrane at a loading of 3%. The flux of humic acid solution reached 154.5 ± 6.6 L/(m2·h), 30-folds higher than the pristine PES membrane with a slight decrease in rejection (71% vs. 60%). Moreover, DBR loaded membranes (2% and 3%) showed an almost complete flux recovery ratio over five cleaning cycles, demonstrating their excellent antifouling property. The hydraulic performance could possibly be enhanced by leaching the entrapped DBR to create more voids and pores for water permeation.


Sign in / Sign up

Export Citation Format

Share Document