scholarly journals Examples of the use of the embedded systems for the long-term collection of slowly-changing parameters in the traction of a car

2021 ◽  
Author(s):  
Zbigniew Wołczyński

The article presents how embedded systems can be used to collect data in the long-term traction of a car. It is assumed that the long period is the time of a travelled distance, e.g. a few thousands of kilometers, or a time, e.g. a month. Such data can be used to optimize the control systems and to diagnose unusual faults in mechatronic systems. The research paper presents how, with the use of very cheap devices, it is possible to collect data that quite often could not be collected even with the use of very expensive measuring devices. The possibility of simple analysis of signals in real time was also noted.

2021 ◽  
Vol 11 (20) ◽  
pp. 9747
Author(s):  
Beomseok Park ◽  
Sebin Kim ◽  
Seoryeong Park ◽  
Minji Kim ◽  
Tae Yoo Kim ◽  
...  

Many air pollutants are inhaled by human breathing, increasing the prevalence of respiratory disease and even mortality. With the recent COVID-19 issue, the number of air pollutants affecting humans is demands further investigation. However, there are not many adequate air measuring devices that can cover a variety of air pollutants. In this study, the developed air measurement system is able to measure sixteen air pollutants (PM10, PM2.5, PM4.0, PM1.0, CO2, CH4, temperature, humidity, VOCs, O2, H2S, NH3, SO2, CO, O3, NO2) in real time. The developed ‘multi-item air quality monitoring system’ can measure sixteen air pollutants in real time and transmit them to the server and the smartphone application at the same time. It was developed to reduce air pollutant damage to humans by emergency alerts using the smartphone application. The development system is composed of hardware development (measurement device) and software development (smartphone application, server). To verify the reliability of the developed equipment, a comparative test, temperature–humidity accuracy test, and operating temperature test were conducted. In the comparative test, difference ratios of ±5% for PM10, ±6% for PM2.5, ±4% for O3, ±5% for NO2, ±7% for CO, and ±7% for SO2 were found compared to the professional measuring devices. The temperature and humidity accuracy test result showed high reliability at ±1% and humidity ± 2%. The result of the operating temperature test showed that there was no problem in normal operation, However, further tests including the long-term comparative test and the closed chamber test will be carried out for all sensors. Additional work including a long-term test for more clear reliability of the device and closed chamber accuracy test for all 16-item sensors, data acquisition rate, and data transmit rate are in progress for commercializing the device.


Author(s):  
Suk-Hyun Seo ◽  
Jin-Ho Kim ◽  
Key Ho Kwon ◽  
Jae Wook Jeon ◽  
SungHo Hwang

This paper presents the requirements of an automotive gateway for in-vehicle networks. Modern vehicles include several heterogeneous networks such as LIN, CAN, FlexRay, and MOST. The gateway enables seamless communication between heterogeneous networks. The role of a gateway is not complex, but the gateway has the potential to damage the operation of other connected electronic control units and networks. In this paper, we analyze the requirements for the automotive gateway from the viewpoint of hard real-time embedded systems in automotive distributed control systems. We implement the gateway based on these requirements. Finally, we evaluate the performance of the gateway.


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000040-000045
Author(s):  
Bhal Tulpule ◽  
Alireza R. Behbahani

Abstract This paper describes the results of the risk reduction testing task recently completed by Embedded Systems LLC under the Air Force SBIR contract {5} titled “Improved Full Authority Digital Engine Control (FADEC) System”. The objective of this program has been to develop a hierarchical, distributed architecture for future propulsion FADEC and aerospace control systems with flexible, scalable and reconfigurable Smart Nodes (SN) built with high temperature capable devices. A key part of this program is the design, development and validation of the System On Chip (SOC) chipset in high temperature (225 Deg. C) SOI (Silicon On Insulator) technology ASIC (Application Specific Integrated Circuit) devices. The SOC chipset designed by Embedded Systems LLC provides the scalability and reconfigurability that enables the Smart Node to interfaces with most sensors and actuators found in FADEC and other aircraft control systems. The analog portion of this 2-chip SOC chipset fabricated by Honeywell using their SOI process is working properly. The digital portion of the SOC chipset, currently implemented in a commercial temperature FPGA (Field Programmable Gate Array), contains important computational functions needed for reconfiguring the SOC and performing complex control functions, such as real time control of an actuator, The risk reduction task was therefore focused on verification and validation of these key functions in a real environment before converting the design into an ASIC. The recent successful demonstration of the real time actuator control capability has minimized the risks and cleared the way for the digital ASIC implementation. The complete high temperature SOC chipset is expected to be available in late 2016.


2016 ◽  
Vol 34 (2) ◽  
pp. 082-097
Author(s):  
Dmitrij Yu. Uchaev ◽  
◽  
Yurij M. Brumshteyn ◽  
Iskandar M. Azhmukhamedov ◽  
Oksana M. Knyazeva ◽  
...  

Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Balaji M ◽  
Chandrasekaran M ◽  
Vaithiyanathan Dhandapani

A Novel Rail-Network Hardware with simulation facilities is presented in this paper. The hardware is designed to facilitate the learning of application-oriented, logical, real-time programming in an embedded system environment. The platform enables the creation of multiple unique programming scenarios with variability in complexity without any hardware changes. Prior experimental hardware comes with static programming facilities that focus the students’ learning on hardware features and programming basics, leaving them ill-equipped to take up practical applications with more real-time constraints. This hardware complements and completes their learning to help them program real-world embedded systems. The hardware uses LEDs to simulate the movement of trains in a network. The network has train stations, intersections and parking slots where the train movements can be controlled by using a 16-bit Renesas RL78/G13 microcontroller. Additionally, simulating facilities are provided to enable the students to navigate the trains by manual controls using switches and indicators. This helps them get an easy understanding of train navigation functions before taking up programming. The students start with simple tasks and gradually progress to more complicated ones with real-time constraints, on their own. During training, students’ learning outcomes are evaluated by obtaining their feedback and conducting a test at the end to measure their knowledge acquisition during the training. Students’ Knowledge Enhancement Index is originated to measure the knowledge acquired by the students. It is observed that 87% of students have successfully enhanced their knowledge undergoing training with this rail-network simulator.


Sign in / Sign up

Export Citation Format

Share Document