scholarly journals Development of Multi-Item Air Quality Monitoring System Based on Real-Time Data

2021 ◽  
Vol 11 (20) ◽  
pp. 9747
Author(s):  
Beomseok Park ◽  
Sebin Kim ◽  
Seoryeong Park ◽  
Minji Kim ◽  
Tae Yoo Kim ◽  
...  

Many air pollutants are inhaled by human breathing, increasing the prevalence of respiratory disease and even mortality. With the recent COVID-19 issue, the number of air pollutants affecting humans is demands further investigation. However, there are not many adequate air measuring devices that can cover a variety of air pollutants. In this study, the developed air measurement system is able to measure sixteen air pollutants (PM10, PM2.5, PM4.0, PM1.0, CO2, CH4, temperature, humidity, VOCs, O2, H2S, NH3, SO2, CO, O3, NO2) in real time. The developed ‘multi-item air quality monitoring system’ can measure sixteen air pollutants in real time and transmit them to the server and the smartphone application at the same time. It was developed to reduce air pollutant damage to humans by emergency alerts using the smartphone application. The development system is composed of hardware development (measurement device) and software development (smartphone application, server). To verify the reliability of the developed equipment, a comparative test, temperature–humidity accuracy test, and operating temperature test were conducted. In the comparative test, difference ratios of ±5% for PM10, ±6% for PM2.5, ±4% for O3, ±5% for NO2, ±7% for CO, and ±7% for SO2 were found compared to the professional measuring devices. The temperature and humidity accuracy test result showed high reliability at ±1% and humidity ± 2%. The result of the operating temperature test showed that there was no problem in normal operation, However, further tests including the long-term comparative test and the closed chamber test will be carried out for all sensors. Additional work including a long-term test for more clear reliability of the device and closed chamber accuracy test for all 16-item sensors, data acquisition rate, and data transmit rate are in progress for commercializing the device.

2016 ◽  
Vol 113 (35) ◽  
pp. 9769-9773 ◽  
Author(s):  
Maxime Taquet ◽  
Jordi Quoidbach ◽  
Yves-Alexandre de Montjoye ◽  
Martin Desseilles ◽  
James J. Gross

Most theories of motivation have highlighted that human behavior is guided by the hedonic principle, according to which our choices of daily activities aim to minimize negative affect and maximize positive affect. However, it is not clear how to reconcile this idea with the fact that people routinely engage in unpleasant yet necessary activities. To address this issue, we monitored in real time the activities and moods of over 28,000 people across an average of 27 d using a multiplatform smartphone application. We found that people’s choices of activities followed a hedonic flexibility principle. Specifically, people were more likely to engage in mood-increasing activities (e.g., play sports) when they felt bad, and to engage in useful but mood-decreasing activities (e.g., housework) when they felt good. These findings clarify how hedonic considerations shape human behavior. They may explain how humans overcome the allure of short-term gains in happiness to maximize long-term welfare.


2021 ◽  
Author(s):  
Zbigniew Wołczyński

The article presents how embedded systems can be used to collect data in the long-term traction of a car. It is assumed that the long period is the time of a travelled distance, e.g. a few thousands of kilometers, or a time, e.g. a month. Such data can be used to optimize the control systems and to diagnose unusual faults in mechatronic systems. The research paper presents how, with the use of very cheap devices, it is possible to collect data that quite often could not be collected even with the use of very expensive measuring devices. The possibility of simple analysis of signals in real time was also noted.


2004 ◽  
Vol 14 (1) ◽  
pp. 17-26 ◽  
Author(s):  
C. Jacyn Baker ◽  
Daniel P. Roberts ◽  
Norton M. Mock ◽  
Vansie L. Blount

A novel technique allows long-term monitoring of real-time oxygen consumption during seed germination in an open system. Most current techniques used to detect oxygen consumption by seeds measure the decrease in oxygen concentration in a closed chamber. This is not ideal for long-term experiments because the chamber must be replenished with air periodically, subjecting the seeds to abrupt changes in oxygen concentration. The current technique employs an open system, in which seeds are submerged in a continuously aerated aqueous environment. Oxygen electrodes are used to measure the steady-state concentration of oxygen in the solution, which is a function of both the rate of oxygen consumption by the seed and the rate of aeration from the atmosphere. The rate of aeration is directly dependent on the oxygen concentration of the bathing solution; therefore, previous calibration of the system allows the direct conversion of steady-state oxygen concentrations into oxygen consumption rates. Because oxygen is not limiting, the experimental design described here can monitor the same sample non-intrusively every minute for more than 24 h, allowing for greater precision than hourly readings often reported with current techniques. Multiple treatments and/or replicates can be run simultaneously, allowing sensitive comparison of various seed treatments or seed types. To illustrate its potential application, the technique was used to follow the rehydration and pre-emergence phases of germination of cucumber (Cucumis sativum), pea (Pisum sativum) and mustard (Brassica juncea) seeds, detect the inhibitory effects of surface sterilization techniques on seed respiration of cucumber, and follow the interaction of a bacterial biocontrol agent with germinating cucumber and pea seeds.


2021 ◽  
Vol 10 (10) ◽  
pp. 699
Author(s):  
Zun Niu ◽  
Fugui Guo ◽  
Qiangqiang Shuai ◽  
Guangchen Li ◽  
Bocheng Zhu

The real-time kinematic positioning technique (RTK) and visual–inertial odometry (VIO) are both promising positioning technologies. However, RTK degrades in GNSS-hostile areas, where global navigation satellite system (GNSS) signals are reflected and blocked, while VIO is affected by long-term drift. The integration of RTK and VIO can improve the accuracy and robustness of positioning. In recent years, smartphones equipped with multiple sensors have become commodities and can provide measurements for integrating RTK and VIO. This paper verifies the feasibility of integrating RTK and VIO using smartphones, and we propose an improved algorithm to integrate RTK and VIO with better performance. We began by developing an Android smartphone application for data collection and then wrote a Python program to convert the data to a robot operating system (ROS) bag. Next, we established two ROS nodes to calculate the RTK results and accomplish the integration. Finally, we conducted experiments in urban areas to assess the integration of RTK and VIO based on smartphones. The results demonstrate that the integration improves the accuracy and robustness of positioning and that our improved algorithm reduces altitude deviation. Our work can aid navigation and positioning research, which is the reason why we open source the majority of the codes at our GitHub.


Impact ◽  
2020 ◽  
Vol 2020 (3) ◽  
pp. 63-65
Author(s):  
Tomomi Higashi

Talk to any allergy sufferer and they will tell you how awful it can be. Runny noses, itchy eyes, coughing and difficulties breathing. For many these symptoms rise only to the level of annoyance and can be avoided by steering clear of the source of their allergy. What many people don't realise though is that allergies can become a far more serious issue for a large segment of the population. Shortness of breath and difficulty breathing due to allergies bring many people to emergency rooms and these are just the acute symptoms. Along with the potential for an allergic attack during a windy or dusty day, researchers and medical professionals are beginning to recognise that there are chronic, long term effects associated with allergies. In order to mitigate both the acute and chronic effects of allergies a better understanding of how genetic factors combine with environmental conditions to produce the ranges of symptoms and effects of allergy suffers is needed. Professor Tomomi Higashi, from the Department of Hygiene at Kanazawa University in Japan, is an expert in this field and is currently working to improve treatment and prevention of allergic disease.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4597
Author(s):  
Zi-Xuan Yu ◽  
Meng-Shi Li ◽  
Yi-Peng Xu ◽  
Sheraz Aslam ◽  
Yuan-Kang Li

The optimal planning of grid-connected microgrids (MGs) has been extensively studied in recent years. While most of the previous studies have used fixed or time-of-use (TOU) prices for the optimal sizing of MGs, this work introduces real-time pricing (RTP) for implementing a demand response (DR) program according to the national grid prices of Iran. In addition to the long-term planning of MG, the day-ahead operation of MG is also analyzed to get a better understanding of the DR program for daily electricity dispatch. For this purpose, four different days corresponding to the four seasons are selected for further analysis. In addition, various impacts of the proposed DR program on the MG planning results, including sizing and best configuration, net present cost (NPC) and cost of energy (COE), and emission generation by the utility grid, are investigated. The optimization results show that the implementation of the DR program has a positive impact on the technical, economic, and environmental aspects of MG. The NPC and COE are reduced by about USD 3700 and USD 0.0025/kWh, respectively. The component size is also reduced, resulting in a reduction in the initial cost. Carbon emissions are also reduced by 185 kg/year.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3956
Author(s):  
Youngsun Kong ◽  
Hugo F. Posada-Quintero ◽  
Ki H. Chon

The subjectiveness of pain can lead to inaccurate prescribing of pain medication, which can exacerbate drug addiction and overdose. Given that pain is often experienced in patients’ homes, there is an urgent need for ambulatory devices that can quantify pain in real-time. We implemented three time- and frequency-domain electrodermal activity (EDA) indices in our smartphone application that collects EDA signals using a wrist-worn device. We then evaluated our computational algorithms using thermal grill data from ten subjects. The thermal grill delivered a level of pain that was calibrated for each subject to be 8 out of 10 on a visual analog scale (VAS). Furthermore, we simulated the real-time processing of the smartphone application using a dataset pre-collected from another group of fifteen subjects who underwent pain stimulation using electrical pulses, which elicited a VAS pain score level 7 out of 10. All EDA features showed significant difference between painless and pain segments, termed for the 5-s segments before and after each pain stimulus. Random forest showed the highest accuracy in detecting pain, 81.5%, with 78.9% sensitivity and 84.2% specificity with leave-one-subject-out cross-validation approach. Our results show the potential of a smartphone application to provide near real-time objective pain detection.


Author(s):  
Macarena Valdés Salgado ◽  
Pamela Smith ◽  
Mariel Opazo ◽  
Nicolás Huneeus

Background: Several countries have documented the relationship between long-term exposure to air pollutants and epidemiological indicators of the COVID-19 pandemic, such as incidence and mortality. This study aims to explore the association between air pollutants, such as PM2.5 and PM10, and the incidence and mortality rates of COVID-19 during 2020. Methods: The incidence and mortality rates were estimated using the COVID-19 cases and deaths from the Chilean Ministry of Science, and the population size was obtained from the Chilean Institute of Statistics. A chemistry transport model was used to estimate the annual mean surface concentration of PM2.5 and PM10 in a period before the current pandemic. Negative binomial regressions were used to associate the epidemiological information with pollutant concentrations while considering demographic and social confounders. Results: For each microgram per cubic meter, the incidence rate increased by 1.3% regarding PM2.5 and 0.9% regarding PM10. There was no statistically significant relationship between the COVID-19 mortality rate and PM2.5 or PM10. Conclusions: The adjusted regression models showed that the COVID-19 incidence rate was significantly associated with chronic exposure to PM2.5 and PM10, even after adjusting for other variables.


Sign in / Sign up

Export Citation Format

Share Document