scholarly journals BIOMONITORING OF SEVOFLURANE EXPOSURE IN ANESTHESIOLOGIST

2021 ◽  
Vol 16 (1SP) ◽  
pp. 57
Author(s):  
Firly Ratsmita ◽  
Muhammad Ilyas

ABSTRACTSevoflurane is used by anesthetists for the induction and maintenance of general anesthesia. This causes the anesthetist to get daily exposures. This will be a potential hazard for exposed operating room personnel, especially anesthetists. The adverse health effects of sevoflurane as hepatotoxic, nephrotoxic and neurotoxic in the human body can be a risk for anaesthetists. Biological monitoring can be done by measuring the levels of sevoflurane and its metabolites or by looking at biomarkers for their effects on health effects. The aim of this study was to seek a literature review on the biomonitoring of sevoflurane exposure in anaesthetists. We searched the literature review using the PRISMA method in PubMed and Google scholar using the following keywords "occupational disease" "chronic effects" "anaesthetist" "sevoflurane exposure" "inorganic fluoride" "biomarkers" previously using the term MeSH and combined with Boolen "OR" and AND". We obtain 75 articles taken from the database, excluded 35 articles, and selected 5 articles. The results of the review articles showed that there were health effects, especially on liver and kidney function in chronic exposure. Biological monitoring can be undertaken by detecting sevoflurane and its metabolites in the urine during work and function of the liver and kidneys. The evidence for biological monitoring as surveillance in anaesthesiologists remain inconsistent due to limited studies. We recommend to measure sevoflurane in ambient air using a hierarchy of controls, such as elimination, replacement, engineering, administrative and personal protective equipment. We need to undertaken environmental and biological monitoring in order to acquire a safe and healthy work environment. Keywords: sevoflurane exposure, occupational health, anesthesiologist

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1107
Author(s):  
Vlatka Matkovic ◽  
Maida Mulić ◽  
Selma Azabagić ◽  
Marija Jevtić

Ambient air pollution is one of eight global risk factors for deaths and accounts for 38.44 all causes death rates attributable to ambient PM pollution, while in Bosnia and Herzegovina, it is 58.37. We have estimated health endpoints and possible gains if two policy scenarios were implemented and air pollution reduction achieved. Real-world health and recorded PM pollution data for 2018 were used for assessing the health impacts and possible gains. Calculations were performed with WHO AirQ+ software against two scenarios with cut-off levels at country-legal values and WHO air quality recommendations. Ambient PM2.5 pollution is responsible for 16.20% and 22.77% of all-cause mortality among adults in Tuzla and Lukavac, respectively. Our data show that life expectancy could increase by 2.1 and 2.4 years for those cities. In the pollution hotspots, in reality, there is a wide gap in what is observed and the implementation of the legally binding air quality limit values and, thus, adverse health effects. Considerable health gains and life expectancy are possible if legal or health scenarios in polluted cities were achieved. This estimate might be useful in providing additional health burden evidence as a key component for a clean air policy and action plans.


2017 ◽  
Vol 08 (08) ◽  
pp. 844-866 ◽  
Author(s):  
Larisa I. Privalova ◽  
Boris A. Katsnelson ◽  
Marina P. Sutunkova ◽  
Ilzira A. Minigalieva ◽  
Vladimir B. Gurvich ◽  
...  

2021 ◽  
Vol 64 (1) ◽  
pp. 3-11
Author(s):  
Jong-Tae Lee

There is a growing body of literature on the adverse health effects of ambient air pollution. Children are more adversely affected by air pollution due to their biological susceptibility and exposure patterns. This review summarized the accumulated epidemiologic evidence with emphasis on studies conducted in Korea and heterogeneity in the literature. Based on systematic reviews and meta-analyses, there is consistent evidence on the association between exposure to ambient air pollution and children’s health, especially respiratory health and adverse birth outcomes, and growing evidence on neurodevelopmental outcomes. Despite these existing studies, the mechanism of the adverse health effects of air pollution and the critical window of susceptibility remain unclear. There is also a need to identify causes of heterogeneity between studies in terms of measurement of exposure/outcome, study design, and the differential characteristics of air pollutants and population.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2136 ◽  
Author(s):  
Andújar ◽  
Gálvez-Ontiveros ◽  
Zafra-Gómez ◽  
Rodrigo ◽  
Álvarez-Cubero ◽  
...  

Bisphenol A (BPA) is the most well-known compound from the bisphenol family. As BPA has recently come under pressure, it is being replaced by compounds very similar in structure, but data on the occurrence of these BPA analogues in food and human matrices are limited. The main objective of this work was to investigate human exposure to BPA and analogues and the associated health effects. We performed a literature review of the available research made in humans, in in vivo and in vitro tests. The findings support the idea that exposure to BPA analogues may have an impact on human health, especially in terms of obesity and other adverse health effects in children.


2021 ◽  
Vol 65 (2) ◽  
Author(s):  
Elizabeth Teresita Romero Guzmán ◽  
Lázaro Raymundo Reyes-Gutiérrez ◽  
Liliana Romero Guzmán ◽  
Héctor Hernández Mendoza ◽  
Lucía Clara Uría Gómez ◽  
...  

Abstract. Particulate matter (PM) is recognized as a type of pollutant emitted through the air that generates adverse health effects. Bioaerosols are PM of biological origin, that has not been morphologically characterized as exhaustively as other types of PM. The term bioaerosols collectively refers to all dead or living airborne particles with biological origins, including pollen, fungi, bacteria, viruses, plant or animal debris, as well as fragments and products of pathogenic microorganisms. Pathogenic airborne microorganisms may have public health consequences. Bioaerosols suspended in ambient air from the Metropolitan Zone of Toluca Valley (MZTV), State of Mexico were identified by scanning electron microscopy followed by energy dispersive x-ray spectroscopy, to determine their morphology, elemental chemical composition, and average sizes. The bioaerosols detected were pollen, spores, microorganisms, fragments, and diatoms that exhibited diverse morphological structures; while some particles had rough or smooth surfaces, others were spongy and spherical or had irregular or thorny surfaces. Others, yet, had well-structured surfaces such as the amoeba that were detected in the study. EDS analyses carried out on SEM samples demonstrated that C and O were the main chemical elements of them. The main components of diatoms were the silicon and oxygen. The particle radii (r) of detected pollen was 2 µm ≤ r ≤ 23 µm, spores were 0.17 µm ≤ r ≤ 3.7 µm, microorganisms were 0.16 µm ≤ r ≤ 12 µm, and diatoms were 2.3 µm ≤ r ≤ 23 µm. Bioaerosols aerodynamic sizes range can be potentially poses adverse health effects.   Resumen. El material particulado (MP) se reconoce como un tipo de contaminante emitido a través del aire que genera efectos adversos para la salud. Los bioaerosoles son MP de origen biológico, que no han sido caracterizados morfológicamente tan exhaustivamente como otros tipos de MP. El término bioaerosoles se refiere colectivamente a todas las partículas muertas o vivas transportadas por el aire con orígenes biológicos, que incluyen polen, hongos, bacterias, virus, restos de plantas o animales, así como fragmentos y productos de microorganismos patógenos. Los microorganismos patógenos transportados por el aire pueden tener consecuencias para la salud pública. Los bioaerosoles suspendidos en el aire de la Zona Metropolitana del Valle de Toluca (MZTV), Estado de México, fueron identificados mediante microscopía electrónica de barrido seguido de espectroscopía de rayos X de energía dispersiva, para determinar su morfología, composición química elemental y tamaño promedio. Los bioaerosoles detectados fueron polen, esporas, microorganismos, fragmentos y diatomeas que exhibieron diversas estructuras morfológicas; mientras que algunas partículas tenían superficies rugosas o lisas, otras eran esponjosas y esféricas o tenían superficies irregulares o espinosas. Otros, sin embargo, tenían superficies bien estructuradas como la ameba que se detectó en el estudio. Los análisis de MEB-EDS realizados en muestras demostraron que el C y el O eran los principales elementos químicos de las mismas. Los principales componentes de las diatomeas fueron el silicio y el oxígeno. El radio de partícula (r) del polen fue de 2 µm ≤ r ≤ 23 µm, las esporas fueron de 0.17 µm ≤ r ≤ 3.7 µm, los microorganismos fueron de 0.16 µm ≤ r ≤ 12 µm y las diatomeas fueron de 2.3 µm ≤ r ≤ 23 µm. El intervalo de tamaños aerodinámicos de los bioaerosoles puede presentar efectos adversos para la salud. 


Author(s):  
Gregory C Pratt ◽  
Mark R Stenzel ◽  
Richard K Kwok ◽  
Caroline P Groth ◽  
Sudipto Banerjee ◽  
...  

Abstract The GuLF STUDY, initiated by the National Institute of Environmental Health Sciences, is investigating the health effects among workers involved in the oil spill response and clean-up (OSRC) after the Deepwater Horizon (DWH) explosion in April 2010 in the Gulf of Mexico. Clean-up included in situ burning of oil on the water surface and flaring of gas and oil captured near the seabed and brought to the surface. We estimated emissions of PM2.5 and related pollutants resulting from these activities, as well as from engines of vessels working on the OSRC. PM2.5 emissions ranged from 30 to 1.33e6 kg per day and were generally uniform over time for the flares but highly episodic for the in situ burns. Hourly emissions from each source on every burn/flare day were used as inputs to the AERMOD model to develop average and maximum concentrations for 1-, 12-, and 24-h time periods. The highest predicted 24-h average concentrations sometimes exceeded 5000 µg m−3 in the first 500 m downwind of flaring and reached 71 µg m−3 within a kilometer of some in situ burns. Beyond 40 km from the DWH site, plumes appeared to be well mixed, and the predicted 24-h average concentrations from the flares and in situ burns were similar, usually below 10 µg m−3. Structured averaging of model output gave potential PM2.5 exposure estimates for OSRC workers located in various areas across the Gulf. Workers located nearest the wellhead (hot zone/source workers) were estimated to have a potential maximum 12-h exposure of 97 µg m−3 over the 2-month flaring period. The potential maximum 12-h exposure for workers who participated in in situ burns was estimated at 10 µg m−3 over the ~3-month burn period. The results suggest that burning of oil and gas during the DWH clean-up may have resulted in PM2.5 concentrations substantially above the U.S. National Ambient Air Quality Standard for PM2.5 (24-h average = 35 µg m−3). These results are being used to investigate possible adverse health effects in the GuLF STUDY epidemiologic analysis of PM2.5 exposures.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mona Lichtblau ◽  
Tsogyal D. Latshang ◽  
Sayaka S. Aeschbacher ◽  
Fabienne Huber ◽  
Philipp M. Scheiwiller ◽  
...  

IntroductionWe investigated whether nocturnal oxygen therapy (NOT) mitigates the increase of pulmonary artery pressure in patients during daytime with chronic obstructive pulmonary disease (COPD) traveling to altitude.MethodsPatients with COPD living below 800 m underwent examinations at 490 m and during two sojourns at 2,048 m (with a washout period of 2 weeks < 800 m between altitude sojourns). During nights at altitude, patients received either NOT (3 L/min) or placebo (ambient air 3 L/min) via nasal cannula according to a randomized crossover design. The main outcomes were the tricuspid regurgitation pressure gradient (TRPG) measured by echocardiography on the second day at altitude (under ambient air) and various other echocardiographic measures of the right and left heart function. Patients fulfilling predefined safety criteria were withdrawn from the study.ResultsTwenty-three COPD patients [70% Global Initiative for Chronic Obstructive Lung Disease (GOLD) II/30% GOLD III, mean ± SD age 66 ± 5 years, FEV1 54% ± 13% predicted] were included in the per-protocol analysis. TRPG significantly increased when patients traveled to altitude (from low altitude 21.7 ± 5.2 mmHg to 2,048 m placebo 27.4 ± 7.3 mmHg and 2,048 m NOT 27.8 ± 8.3 mmHg) difference between interventions (mean difference 0.4 mmHg, 95% CI −2.1 to 3.0, p = 0.736). The tricuspid annular plane systolic excursion was significantly higher after NOT vs. placebo [2.6 ± 0.6 vs. 2.3 ± 0.4 cm, mean difference (95% confidence interval) 0.3 (0.1 − 0.5) cm, p = 0.005]. During visits to 2,048 m until 24 h after descent, eight patients (26%) using placebo and one (4%) using NOT had to be withdrawn because of altitude-related adverse health effects (p < 0.001).ConclusionIn lowlanders with COPD remaining free of clinically relevant altitude-related adverse health effects, changes in daytime pulmonary hemodynamics during a stay at high altitude were trivial and not modified by NOT.Clinical Trial Registrationwww.ClinicalTrials.gov, identifier NCT02150590.


Sign in / Sign up

Export Citation Format

Share Document