scholarly journals Dietary fatty acids and adipose tissue inflammation at the crossroad between obesity and colorectal cancer

Author(s):  
Lucia Conti ◽  
Manuela Del Corn�� ◽  
Beatrice Scazzocchio ◽  
Rosaria Var�� ◽  
Massimo D��Archivio ◽  
...  
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Michiko Itoh ◽  
Takayoshi Suganami ◽  
Rumi Hachiya ◽  
Yoshihiro Ogawa

Evidence has accumulated indicating that obesity is associated with a state of chronic, low-grade inflammation. Obese adipose tissue is characterized by dynamic changes in cellular composition and function, which may be referred to as “adipose tissue remodeling”. Among stromal cells in the adipose tissue, infiltrated macrophages play an important role in adipose tissue inflammation and systemic insulin resistance. We have demonstrated that a paracrine loop involving saturated fatty acids and tumor necrosis factor-α derived from adipocytes and macrophages, respectively, aggravates obesity-induced adipose tissue inflammation. Notably, saturated fatty acids, which are released from hypertrophied adipocytes via the macrophage-induced lipolysis, serve as a naturally occurring ligand for Toll-like receptor 4 complex, thereby activating macrophages. Such a sustained interaction between endogenous ligands derived from parenchymal cells and pathogen sensors expressed in stromal immune cells should lead to chronic inflammatory responses ranging from the basal homeostatic state to diseased tissue remodeling, which may be referred to as “homeostatic inflammation”. We, therefore, postulate that adipose tissue remodeling may represent a prototypic example of homeostatic inflammation. Understanding the molecular mechanism underlying homeostatic inflammation may lead to the identification of novel therapeutic strategies to prevent or treat obesity-related complications.


2011 ◽  
Vol 2 (4) ◽  
pp. 304-316 ◽  
Author(s):  
Nishan S. Kalupahana ◽  
Kate J. Claycombe ◽  
Naima Moustaid-Moussa

2018 ◽  
Vol 48 ◽  
pp. 472-480 ◽  
Author(s):  
Mariana de Moura e Dias ◽  
Nathane Pais Siqueira ◽  
Lisiane Lopes da Conceição ◽  
Sandra Aparecida dos Reis ◽  
Flávia Xavier Valente ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1738
Author(s):  
Manuela Del Cornò ◽  
Rosaria Varì ◽  
Beatrice Scazzocchio ◽  
Barbara Varano ◽  
Roberta Masella ◽  
...  

Colorectal cancer (CRC) is among the major threatening diseases worldwide, being the third most common cancer, and a leading cause of death, with a global incidence expected to increase in the coming years. Enhanced adiposity, particularly visceral fat, is a major risk factor for the development of several tumours, including CRC, and represents an important indicator of incidence, survival, prognosis, recurrence rates, and response to therapy. The obesity-associated low-grade chronic inflammation is thought to be a key determinant in CRC development, with the adipocytes and the adipose tissue (AT) playing a significant role in the integration of diet-related endocrine, metabolic, and inflammatory signals. Furthermore, AT infiltrating immune cells contribute to local and systemic inflammation by affecting immune and cancer cell functions through the release of soluble mediators. Among the factors introduced with diet and enriched in AT, fatty acids (FA) represent major players in inflammation and are able to deeply regulate AT homeostasis and immune cell function through gene expression regulation and by modulating the activity of several transcription factors (TF). This review summarizes human studies on the effects of dietary FA on AT homeostasis and immune cell functions, highlighting the molecular pathways and TF involved. The relevance of FA balance in linking diet, AT inflammation, and CRC is also discussed. Original and review articles were searched in PubMed without temporal limitation up to March 2021, by using fatty acid as a keyword in combination with diet, obesity, colorectal cancer, inflammation, adipose tissue, immune cells, and transcription factors.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniel Castellano-Castillo ◽  
Sonsoles Morcillo ◽  
Mercedes Clemente-Postigo ◽  
Ana Belén Crujeiras ◽  
Jose Carlos Fernandez-García ◽  
...  

2020 ◽  
Vol 134 (12) ◽  
pp. 1403-1432 ◽  
Author(s):  
Manal Muin Fardoun ◽  
Dina Maaliki ◽  
Nabil Halabi ◽  
Rabah Iratni ◽  
Alessandra Bitto ◽  
...  

Abstract Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.


Sign in / Sign up

Export Citation Format

Share Document