scholarly journals Adipose Tissue Remodeling as Homeostatic Inflammation

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Michiko Itoh ◽  
Takayoshi Suganami ◽  
Rumi Hachiya ◽  
Yoshihiro Ogawa

Evidence has accumulated indicating that obesity is associated with a state of chronic, low-grade inflammation. Obese adipose tissue is characterized by dynamic changes in cellular composition and function, which may be referred to as “adipose tissue remodeling”. Among stromal cells in the adipose tissue, infiltrated macrophages play an important role in adipose tissue inflammation and systemic insulin resistance. We have demonstrated that a paracrine loop involving saturated fatty acids and tumor necrosis factor-α derived from adipocytes and macrophages, respectively, aggravates obesity-induced adipose tissue inflammation. Notably, saturated fatty acids, which are released from hypertrophied adipocytes via the macrophage-induced lipolysis, serve as a naturally occurring ligand for Toll-like receptor 4 complex, thereby activating macrophages. Such a sustained interaction between endogenous ligands derived from parenchymal cells and pathogen sensors expressed in stromal immune cells should lead to chronic inflammatory responses ranging from the basal homeostatic state to diseased tissue remodeling, which may be referred to as “homeostatic inflammation”. We, therefore, postulate that adipose tissue remodeling may represent a prototypic example of homeostatic inflammation. Understanding the molecular mechanism underlying homeostatic inflammation may lead to the identification of novel therapeutic strategies to prevent or treat obesity-related complications.

2018 ◽  
Vol 48 ◽  
pp. 472-480 ◽  
Author(s):  
Mariana de Moura e Dias ◽  
Nathane Pais Siqueira ◽  
Lisiane Lopes da Conceição ◽  
Sandra Aparecida dos Reis ◽  
Flávia Xavier Valente ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Vinícius Andrade-Oliveira ◽  
Niels O.S. Câmara ◽  
Pedro M. Moraes-Vieira

Diabetes and obesity are worldwide health problems. White fat dynamically participates in hormonal and inflammatory regulation. White adipose tissue is recognized as a multifactorial organ that secretes several adipose-derived factors that have been collectively termed “adipokines.” Adipokines are pleiotropic molecules that gather factors such as leptin, adiponectin, visfatin, apelin, vaspin, hepcidin, RBP4, and inflammatory cytokines, including TNF and IL-1β, among others. Multiple roles in metabolic and inflammatory responses have been assigned to these molecules. Several adipokines contribute to the self-styled “low-grade inflammatory state” of obese and insulin-resistant subjects, inducing the accumulation of metabolic anomalies within these individuals, including autoimmune and inflammatory diseases. Thus, adipokines are an interesting drug target to treat autoimmune diseases, obesity, insulin resistance, and adipose tissue inflammation. The aim of this review is to present an overview of the roles of adipokines in different immune and nonimmune cells, which will contribute to diabetes as well as to adipose tissue inflammation and insulin resistance development. We describe how adipokines regulate inflammation in these diseases and their therapeutic implications. We also survey current attempts to exploit adipokines for clinical applications, which hold potential as novel approaches to drug development in several immune-mediated diseases.


Author(s):  
Charmaine S. Tam ◽  
Leanne M. Redman

AbstractObesity is characterized by a state of chronic low-grade inflammation due to increased immune cells, specifically infiltrated macrophages into adipose tissue, which in turn secrete a range of proinflammatory mediators. This nonselective low-grade inflammation of adipose tissue is systemic in nature and can impair insulin signaling pathways, thus, increasing the risk of developing insulin resistance and type 2 diabetes. The aim of this review is to provide an update on clinical studies examining the role of adipose tissue in the development of obesity-associated complications in humans. We will discuss adipose tissue inflammation during different scenarios of energy imbalance and metabolic dysfunction including obesity and overfeeding, weight loss by calorie restriction or bariatric surgery, and conditions of insulin resistance (diabetes, polycystic ovarian syndrome).


2017 ◽  
Vol 312 (4) ◽  
pp. E309-E325 ◽  
Author(s):  
Pia S. Petersen ◽  
Xia Lei ◽  
Risa M. Wolf ◽  
Susana Rodriguez ◽  
Stefanie Y. Tan ◽  
...  

Chronic low-grade inflammation and cellular stress are important contributors to obesity-linked metabolic dysfunction. Here, we uncover an immune-metabolic role for C1q/TNF-related protein 7 (CTRP7), a secretory protein of the C1q family with previously unknown function. In obese humans, circulating CTRP7 levels were markedly elevated and positively correlated with body mass index, glucose, insulin, insulin resistance index, hemoglobin A1c, and triglyceride levels. Expression of CTRP7 in liver was also significantly upregulated in obese humans and positively correlated with gluconeogenic genes. In mice, Ctrp7 expression was differentially modulated in various tissues by fasting and refeeding and by diet-induced obesity. A genetic loss-of-function mouse model was used to determine the requirement of CTRP7 for metabolic homeostasis. When fed a control low-fat diet, male or female mice lacking CTRP7 were indistinguishable from wild-type littermates. In obese male mice consuming a high-fat diet, however, CTRP7 deficiency attenuated insulin resistance and enhanced glucose tolerance, effects that were independent of body weight, metabolic rate, and physical activity level. Improved glucose metabolism in CTRP7-deficient mice was associated with reduced adipose tissue inflammation, as well as decreased liver fibrosis and cellular oxidative and endoplasmic reticulum stress. These results provide a link between elevated CTRP7 levels and impaired glucose metabolism, frequently associated with obesity. Inhibiting CTRP7 action may confer beneficial metabolic outcomes in the setting of obesity and diabetes.


2018 ◽  
Vol 315 (4) ◽  
pp. E676-E693 ◽  
Author(s):  
Valentina Caracciolo ◽  
Jeanette Young ◽  
Donna Gonzales ◽  
Yingchun Ni ◽  
Stephen J. Flowers ◽  
...  

Obesity is associated with adipose tissue inflammation that contributes to insulin resistance. Zinc finger protein 36 (Zfp36) is an mRNA-binding protein that reduces inflammation by binding to cytokine transcripts and promoting their degradation. We hypothesized that myeloid-specific deficiency of Zfp36 would lead to increased adipose tissue inflammation and reduced insulin sensitivity in diet-induced obese mice. As expected, wild-type (Control) mice became obese and diabetic on a high-fat diet, and obese mice with myeloid-specific loss of Zfp36 [knockout (KO)] demonstrated increased adipose tissue and liver cytokine mRNA expression compared with Control mice. Unexpectedly, in glucose tolerance testing and hyperinsulinemic-euglycemic clamp studies, myeloid Zfp36 KO mice demonstrated improved insulin sensitivity compared with Control mice. Obese KO and Control mice had similar macrophage infiltration of the adipose depots and similar peripheral cytokine levels, but lean and obese KO mice demonstrated increased Kupffer cell (KC; the hepatic macrophage)-expressed Mac2 compared with lean Control mice. Insulin resistance in obese Control mice was associated with enhanced Zfp36 expression in KCs. Compared with Control mice, KO mice demonstrated increased hepatic mRNA expression of a multitude of classical (M1) inflammatory cytokines/chemokines, and this M1-inflammatory hepatic milieu was associated with enhanced nuclear localization of IKKβ and the p65 subunit of NF-κB. Our data confirm the important role of innate immune cells in regulating hepatic insulin sensitivity and lipid metabolism, challenge-prevailing models in which M1 inflammatory responses predict insulin resistance, and indicate that myeloid-expressed Zfp36 modulates the response to insulin in mice.


2011 ◽  
Vol 94 (6) ◽  
pp. 1504-1512 ◽  
Author(s):  
Bram van den Borst ◽  
Harry R. Gosker ◽  
Geertjan Wesseling ◽  
Wilco de Jager ◽  
Valéry ACV Hellwig ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1115-1115
Author(s):  
Lynn M Knowles ◽  
Hermann Eichler ◽  
Jan Pilch

We previously showed that impaired clotting in hemophilia leads to a deficit in macrophage differentiation, which negatively affects critical regenerative macrophage functions such as clot infiltration and red blood cell phagocytosis. These data provide a functional basis for the delayed wound healing as well as protracted joint inflammation commonly observed in hemophiliacs and suggest that altered macrophage function is linked to the activation of the innate immune system. We, therefore, hypothesize that hemophiliacs suffer from chronic low-grade inflammation, which in turn can affect joint health, tissue regeneration and age-related ailments such as cardiovascular disease. For this study, we collected citrated blood from 48 adult male patients with hemophilia A or B with an average age of 36 years and a body mass index (BMI) of 27.7 kg/m2. The majority of patients had a residual FVIII/FIX activity < 1% (77%) and received prophylactic treatment (60%) with a recombinant or plasmatic coagulation factor concentrate. Approximately one-half of the patients had target joints or other bleeding events in the last 3 months and one-third of the patients had contracted HBV, HCV or HIV. For controls, we randomly recruited male blood donors (n = 60; age, 35.8 years; BMI, 27.0) from our blood donation center. To assess inflammation in hemophiliacs, we analyzed platelet-poor plasma from our main collective and a BMI-adjusted cohort using commercially available ELISA kits. The results showed a significant increase of two acute-phase proteins, C-reactive protein and leptin in hemophilia patients compared to healthy controls. Further analysis demonstrated that C-reactive protein and leptin expression inversely correlated with the residual clotting activity as both parameters were high in patients with severe Hemophilia A or B and comparatively low in patients with moderate to mild hemophilia. Of note, there was neither an increase of C-reactive protein or leptin in hemophilia patients with recent bleeding (< 3 month), arthropathy, chronic viral infection nor a decrease in patients with coagulation factor activity > 10% due to prophylactic treatment or recent replacement. Therefore, these data suggest a basic link between clotting deficiencies and chronic low-grade inflammation. Low-grade inflammation is maintained by adipokines, which originate from the adipose tissue and are modulated by a process known as adipose tissue inflammation. In addition to the upregulation of the pro-inflammatory leptin, we detected a significant down-regulation of the anti-inflammatory adiponectin in the plasma of hemophilia patients resulting in a markedly decreased adiponectin/leptin ratio. To enquire if the adipose tissue inflammation in hemophilia originates from gram-negative gut bacteria that translocate into the blood circulation, we also detected elevated plasma levels of lipopolysaccharide-binding protein and hepcidin in hemophilia patients. Together, these data support the concept that low-grade inflammation in hemophilia originates from lipopolysaccharide, which in turn causes adipose tissue inflammation. To test the hypothesis that low-grade inflammation in hemophilia is caused by decreased clotting activity, we collected blood from hemophilia B patients before and after transition from a conventional standard-half-life factor IX concentrate to a prophylactic therapy with an elongated half-life (EHL) FIX (Albutrepennonacog alfa, Idelvion®). Following up on the enhanced factor replacement after > 6 months, we observed a return of hepcidin plasma levels back to baseline values in healthy controls. The decreased hepcidin values from EHL FXI therapy correlated with healing of target joints suggesting that EHL FIX not only controls bleeding but also inflammation. Together, our data demonstrate a specific link between hemophilia and low-grade inflammation that appears to involve increased lipopolysaccharide levels in the blood circulation and subsequent adipose tissue inflammation. In addition, we present evidence that low-grade inflammation is the result of the underlying clotting deficit and that sustained normalization of the clotting deficit with EHL factors ameliorates inflammation. Disclosures Eichler: Novo Nordisk: Membership on an entity's Board of Directors or advisory committees. Pilch:CSL Behring: Other: Grants (investigator initiated), Speakers Bureau; ASPIRE Award/Pfizer: Other: Grants (investigator initiated); Bayer: Consultancy, Speakers Bureau; Roche: Consultancy.


2021 ◽  
pp. 1-27
Author(s):  
Zoi Michailidou ◽  
Mario Gomez-Salazar ◽  
Vasileia Ismini Alexaki

Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jolanda H. M. van Bilsen ◽  
Willem van den Brink ◽  
Anita M. van den Hoek ◽  
Remon Dulos ◽  
Martien P. M. Caspers ◽  
...  

Metabolic disorders, such as obesity and type 2 diabetes have a large impact on global health, especially in industrialized countries. Tissue-specific chronic low-grade inflammation is a key contributor to complications in metabolic disorders. To support therapeutic approaches to these complications, it is crucial to gain a deeper understanding of the inflammatory dynamics and to monitor them on the individual level. To this end, blood-based biomarkers reflecting the tissue-specific inflammatory dynamics would be of great value. Here, we describe an in silico approach to select candidate biomarkers for tissue-specific inflammation by using a priori mechanistic knowledge from pathways and tissue-derived molecules. The workflow resulted in a list of candidate markers, in part consisting of literature confirmed biomarkers as well as a set of novel, more innovative biomarkers that reflect inflammation in the liver and adipose tissue. The first step of biomarker verification was on murine tissue gene-level by inducing hepatic inflammation and adipose tissue inflammation through a high-fat diet. Our data showed that in silico predicted hepatic markers had a strong correlation to hepatic inflammation in the absence of a relation to adipose tissue inflammation, while others had a strong correlation to adipose tissue inflammation in the absence of a relation to liver inflammation. Secondly, we evaluated the human translational value by performing a curation step in the literature using studies that describe the regulation of the markers in human, which identified 9 hepatic (such as Serum Amyloid A, Haptoglobin, and Interleukin 18 Binding Protein) and 2 adipose (Resistin and MMP-9) inflammatory biomarkers at the highest level of confirmation. Here, we identified and pre-clinically verified a set of in silico predicted biomarkers for liver and adipose tissue inflammation which can be of great value to study future development of therapeutic/lifestyle interventions to combat metabolic inflammatory complications.


Sign in / Sign up

Export Citation Format

Share Document