scholarly journals MINYAK KULIT JERUK PAKIS SEBAGAI ESSENTIAL OIL DALAM PEMBUATAN SABUN: EKSTRAKSI DAN KARAKTERISASI

Konversi ◽  
2014 ◽  
Vol 3 (2) ◽  
pp. 30
Author(s):  
Iryanti Fatyasari Nata ◽  
Yulia Nurul Ma'rifah ◽  
Herlina Herlina

Abstrak- Kulit jeruk pakis (Citrus grandis) merupakan limbah yang dihasilkan dari kegiatan rumah tangga, industri dan pertanian. Dengan proses distilasi kulit jeruk pakis dapat diambil minyaknya sebagai citrus oil yang selanjutnya dapat dimanfaatkan sebagai bahan baku pembuatan sabun. Penelitian ini bertujuan untuk membandingkan rendemen dan mutu citrus oil dari bahan baku kulit jeruk pakis segar dan dikeringkan (40 oC, 6 jam) dengan metode water distillation. Massa kulit jeruk yang digunakan adalah 200, 300, 400 dan 500 gram diekstraksi selama 3 jam pada 100 °C. Rendemen minyak yang diperoleh untuk kulit jeruk pakis segar berturut-turut pada massa kulit jeruk 200, 300, 400 dan 500 gram ialah  0,888 %, 0,619%, 0,178% dan 0,239% sedangkan untuk kulit jeruk yang keringkan diperoleh rendemen berturut-turut 0,214%, 0,029%,0,074% dan 0,023%. Minyak yang dihasilkan dari kulit jeruk segar dan kering dianalisa dengan Gas Chromatography Mass Spectrometry (GCMS) mengandung 82,136% limonen. Kulit jeruk pakis sebelum dan sesudah diekstraksi dianalisa dengan Scanning Electro Microscopy (SEM) dan X-Ray Diffraction (XRD) menunjukkan bahwa struktur permukaan setelah ekstrasi menjadi rusak dan struktur kristalinnya tidak mengalami perubahan yang signifikan. Minyak yang dihasilkan selanjutnya direaksikan dengan NaOH 30% untuk menghasilkan sabun. Kadar pH sabun pada konsentrasi (w/v) 1%, 5% dan 10% dalam 100mL air berturut-turut sebesar 9, 10 dan 10 sedangkan kadar air dalam sabun yang diperoleh sebesar 37,25%. Kata Kunci: jeruk pakis, minyak kulit jeruk, water distillation, sabun Abstract- Pakis orange peel is one of wasted product from household, industry and agriculture activities. Pakis orange peel can be extracted by distillation as citrus oil. Furthermore, it can be used as essential oil in production of soap. The purposes of this research  is to compare yield and quality of citrus oil base on fresh and dried  pakis orange peel (40°C, 6 hours) by water distillation methode. The variation mass of orange peel was used  200, 300, 400 and 500 gram then was extracted  for 3 hours at 100°C. The yield of citrus oil from fresh pakis orange peel with weight 200, 300, 400 and 500 gram are 0,888%, 0,619%, 0,178% and 0,239%,  respectively. The dried pakis orange peel was produced citrus oil 0,214%, 0,029%, 0,074% and 0,023%, respectively. The citrus oilwas analyzed by Gas Chromatoghrapy Mass Spectrometry (GCMS) which was contained ca. 82,13% of limonene. Pakis orange peel before and after extraction analyzed with Scanning Electro Microscopy (SEM) and X-Ray Diffraction (XRD) were indicated the structure of surface area after extraction has become broken  and the sructure of crystalline structure was not significant changes. Furthermore, citrus oil obtained from extraction was reacted with 30% NaOH for soap production. The pH of soap at concentration 1%, 5% and 10% (w/v) in water  9, 10 and 10, respectively.  The water content in the soap about 37,25%. Keywords: pakis orange, orange peel oil, water distillation, soap

2018 ◽  
Vol 16 (1) ◽  
pp. 1166-1175 ◽  
Author(s):  
Y.C. Wong ◽  
R.X. Ang

AbstractEggshells were utilized as a cost effective catalyst to assist in biodiesel formation. Eggshells were calcined using different calcination conditions such as temperature and time. The eggshells underwent calcination under 1000 °C in which calcium carbonate was completely converted into calcium oxide under open air conditions. The calcined eggshell catalyst was characterized by X-ray diffraction (XRD). Then the eggshell derived CaO catalyst was subjected to transesterification of used cooking oil (UCO). The parametrics in the transesterification of used cooking oil such as a methanol to oil ratio, weight of catalyst and reaction temperature were evaluated. The optimum result exhibited a 4:1 methanol to oil ratio, 2wt % catalyst, and a 65 °C reaction temperature within two hours. Pure calcined CaO acted as the control of the experiment that was subject to the most optimum eggshell derived catalyst transesterification conditions. The catalytic activity for both the pure calcined CaO and the calcined eggshell derived catalyst were comparable. The biodiesel formation was identified by gas chromatography mass spectrometry (GC-MS).


2018 ◽  
Vol 78 (7) ◽  
pp. 1427-1437
Author(s):  
Liang Hong ◽  
Qiu Yang ◽  
Zhao Liying ◽  
Chen Yingyan ◽  
Wang Bing

Abstract Research on three-dimensional electrode system mainly focuses on the material of plate electrode and catalytic activity, and minimal attention is provided to particle electrode. Pyrolusite was prepared as a novel particle electrode with high active chlorine (ACl) yield. The particle electrode was characterised by scanning electrode microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) and electrochemical properties. Results show that the intended pyrolusite particle electrode was prepared successfully. These pyrolusite particle electrodes were applied to degrade sulphonated phenolic resin in chlorine-containing wastewater and displayed an excellent catalytic activity. A total of 68.76 mg/L ACl was produced, and the CODCr removal rate was 49.55%. These results indicated that pyrolusite particle electrode is much more effective than the reference material, that is, granular activated carbon. Furthermore, the product of electrolytic process was characterised by gas chromatography-mass spectrometry (GC-MS) and ultraviolet visible spectrometry (UV-vis). The enhanced mechanism was proposed that the high degradation efficiency could be ascribed to the increase of ACl.


2016 ◽  
Vol 8 (7) ◽  
pp. 1637-1645 ◽  
Author(s):  
Nati Salvadó ◽  
Salvador Butí ◽  
Trinitat Pradell ◽  
Victòria Beltran ◽  
Gianfelice Cinque ◽  
...  

Micro-Infrared Spectroscopy (μSR-FTIR) and X-ray diffraction (μSR-XRD) with synchrotron light, Gas Chromatography/Mass Spectrometry (CG/MS), Optical Microscopy (OM) and Scanning Electron Microscopy (SEM/EDS) were used to obtain the distribution of calcium salts of low molecular weight organic acids (LMWOA) in micro-layered micro-samples.


Author(s):  
Michal P. Dybowski ◽  
Piotr Holowinski ◽  
Rafal Typek ◽  
Andrzej L. Dawidowicz

Abstract Purpose The purpose of the study was to evaluate a complete analytical and structural characterization of methyl 3,3-dimethyl-2-(1-(pent-4-en-1-yl)-1H-indazole-3-carboxamido)butanoate (MDMB-4en-PINACA), a novel synthetic cannabinoid being the analogue of 5F-ADB. Methods The compound was analyzed by gas chromatography–mass spectrometry (GC–MS), high-resolution liquid chromatography–mass spectrometry (LC–MS), X-ray diffraction and spectroscopic methods, such as nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopies. To derive MDMB-4en-PINACA molecular geometry and to assign infrared absorption bands, quantum calculations with the employment of density functional theory were also used. Results We present a wide range of chromatographic and spectroscopic data supported with theoretical calculations allowing to identify MDMB-4en-PINACA. Conclusions To our knowledge, this is the first report presenting a comprehensive analytical and structural characterization of MDMB-4en-PINACA obtained by 1D and 2D NMR, GC–MS, LC–MS(/MS), attenuated total reflection-FTIR spectroscopy, powder X-ray diffraction and quantum chemical calculations. The presented results not only broaden the knowledge about this psychoactive substance but also are useful for forensic and clinical purposes.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


2011 ◽  
Vol 314-316 ◽  
pp. 273-278
Author(s):  
Yu Hua Dong ◽  
Ke Ren ◽  
Qiong Zhou

Linear low density polyethylene (LLDPE) was chemically modified with grafting maleic anhydride (MAH) monomer on its backbone by melting blending. Nano-particles SiO2 was modified by cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and anionic surfactant sulfosalicylic acid (SSA) and added to PE coating respectively. Measurement of membrane potential showed that the coating containing modified SiO2 nano-particles had characteristic of ion selectivity. The properties of the different coatings were investigated according to relative industrial standards. Experimental results indicated that PE coating with ion selectivity had better performances, such as adhesion strength, cathodic disbonding and anti-corrosion, than those of coating without ion selectivity. Crystal structure of the coatings before and after alkali corrosion was characterized by Fourier transform infrared spectra (FTIR) and X-ray diffraction (XRD). Structure of the coating without ion selectivity was damaged by NaOH alkali solution, causing mechanical properties being decreased. And the structure of the ion selective coatings was not affected.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 149-163
Author(s):  
Duncan Micallef ◽  
Liana Vella-Zarb ◽  
Ulrich Baisch

N,N′,N″,N‴-Tetraisopropylpyrophosphoramide 1 is a pyrophosphoramide with documented butyrylcholinesterase inhibition, a property shared with the more widely studied octamethylphosphoramide (Schradan). Unlike Schradan, 1 is a solid at room temperature making it one of a few known pyrophosphoramide solids. The crystal structure of 1 was determined by single-crystal X-ray diffraction and compared with that of other previously described solid pyrophosphoramides. The pyrophosphoramide discussed in this study was synthesised by reacting iso-propyl amine with pyrophosphoryl tetrachloride under anhydrous conditions. A unique supramolecular motif was observed when compared with previously published pyrophosphoramide structures having two different intermolecular hydrogen bonding synthons. Furthermore, the potential of a wider variety of supramolecular structures in which similar pyrophosphoramides can crystallise was recognised. Proton (1H) and Phosphorus 31 (31P) Nuclear Magnetic Resonance (NMR) spectroscopy, infrared (IR) spectroscopy, mass spectrometry (MS) were carried out to complete the analysis of the compound.


Sign in / Sign up

Export Citation Format

Share Document