scholarly journals The Effect of Temperature and Relative Humidity Inside The Shade Netting on The Growth of Pepper Fruiting Branch Cuttings

2021 ◽  
Vol 7 (2) ◽  
pp. 87-92
Author(s):  
Suhermanto Suhermanto ◽  
Gusti Rusmayadi ◽  
Bambang Fredickus Langai

Pepper (Piper nigrum L.) has many benefits, especially in its seeds, commonly used as a food flavoring. Pepper effectively increases appetite, increases the digestive glands' activity, and accelerates fatty substances' digestion. In general, pepper production per unit area in Indonesia is low. The average is below 1 ton of dry pepper per hectare. This low productivity is mainly due to inadequate cultivation techniques, such as improper fertilization and inadequate care. The development of pepper cultivation is still running slowly due to the many obstacles faced by farmers. This productivity could be increased if farmers could apply good and correct cultivation techniques. Generally, pepper cultivation in Indonesia uses standards. This technique is expensive and requires intensive maintenance. The pepper seeds commonly planted by farmers come from running shoots. The experimental design used was the split-plot design with shade netting as the first factor and the administration of husk charcoal as the second factor. Other factors observed were climatic factors, including temperature and relative humidity, bird bud burst time, sprouting time, and root-shoot ratio. The results indicated that the shade netting and husk charcoal treatment on the planting medium significantly affected bird bud burst time, sprouting time, and root-shoot ratio. This study aimed to investigate the effect of climate on the growth of pepper cuttings. The results indicated that the best bird bud burst time occurred in treatment n0 (100%), a0 (1:1) 34.67 days, and not significantly different from n0 (100%) a2 (0: 1) 35.00 days. The best sprouting time occurred in treatment n0 (100%) a2 (0: 1) 32.00 days, not significantly different from n0 (100%) a0 (1: 1) 32.50 days. The root-shoot ratio was significantly different in treatment n0 (100%) a1 (1; 0) 5.28 g.

2018 ◽  
Vol 24 (1) ◽  
Author(s):  
LAKSHMI CHOUDHARY ◽  
PRABHAWATI PRABHAWATI

Prevalence of soil transmitted helminthes infections in apparently healthy school going children and other 528 people of different districts of Koshi regions of North Bihar were evaluated. Over all incidences of STHs infection was 39.39% during study. High incidence of STH was seen in the rainy season i.e., in the month of July and August, September, significantly higher (P<0.05) .The incidence of Ascaris lumbricoides was highest in the month of August (18.64%). The month of September was 15.25% followed by that of July (14.4%) and October with 10.16%. Also the incidence of hookworm registered the highest incidence in the month of June (19.27%) and lowest in the month of December (4.82%) during the study period. However prevalence of Trichuris trichiura was negligible and it was almost nil in the most of the months but was highest in month of September with 28.57% and lowest in October with 14.00% The climatic factors are responsible for soil transmitted helminthes which are temperature, rainfall and relative humidity. Ascariasis, Trichuriasis and Ancyclostomiasis (Hookworm infection) are found to be endemic in this region.


2013 ◽  
Vol 39 (12) ◽  
pp. 2228 ◽  
Author(s):  
Ye FENG ◽  
Feng GUO ◽  
Bao-Long LI ◽  
Jing-Jing MENG ◽  
Xin-Guo LI ◽  
...  

1934 ◽  
Vol 25 (3) ◽  
pp. 309-335 ◽  
Author(s):  
K. R. S. Morris

SummaryA detailed study of the bionomics ofGlossina longipalpis, Wied., was undertaken at Takoradi, the principal port of the Gold Coast in West Africa, and lasted from February to September 1931.The topography of this country is undulating; the vegetation is of Transition Forest type, intermediate in character between Rain Forest and Savannah Forest, and of an exceedingly dense, homogeneous nature, with a few small glades in the forest, and interrupted by large open marshes on the lower and flatter ground.The climate is remarkably equable, with a low mean annual rainfall between 40 and 45 inches, but constantly high humidities, owing to the moisture-laden sea-winds. There is a double rainy season, the main rains from April to July, and a second shorter period of rainfall in October and November.There is a rich mammalian fauna, with the exception of the larger game animals.Three species ofGlossinaoccur:G. longipalpis, Wied., the commonest, evenly distributed throughout the bush, and the only species dealt with in this paper;G. palpalis, R.-D., confined to water-courses and the edges of lagoons; andG. medicorum, Aust., rarely met with.Two isolated fly-belts, identical in every way, were studied. In one, section A, flies were caught and killed daily; in the other, section B, the control area, the flies were liberated after noting the catches. By September, the tsetse population of A had been reduced to less than one-third of that of B, presumably the effects of catching and killing.The main food hosts of this species were the bushbuck and duiker, ubiquitous in this forest. When these small game animals were driven out of a third fly-belt, section C, by farming and wood-cutting, the fly quickly and completely disappeared. This species was never found to feed on reptiles, although they were common in the fly-belts.Meteorological observations in the open country and in the fly-belts showed a consistently lower temperature and higher humidity in the latter, as well as its greater equity in these factors. The movement of the fly into the open was apparently governed by humidity, the greatest movement taking place when the humidity of the open was within the normal range of fly-belt humidity.By statistical methods, coefficients of correlation were determined for the fly's density-activity and various climatic factors of the fly-belt. The fly showed a high positive correlation with temperature, and a lower correlation with humidity, of which saturation deficit was a better index than atmometer evaporation. There was a significant correlation with sunshine, but none with rainfall. This correlation with humidity was mainly a temperature effect, as was also the correlation with sunshine. Temperature was evidently of major importance. There was a significant negative correlation between fly and relative humidity, measured with a wet and dry bulb hygrometer in a screen in the open.All correlations were greatest when considered direct, the fly catches with simultaneous climatic readings, indicating that these factors influence the activity of the fly in this way, rather than its density. The fly was found to be inactive at temperatures below 74°F., with high humidities of 80 or 90 per cent. or over. This explains the major influence of temperature, shown by the methods of correlations. The temperature range in the fly-belt, during the period of observations, was close to the temperature significant for the fly's activity, and therefore variations produced marked reactions; the humidity range was much closer to the fly's optimum and therefore better tolerated.There is marked daily rhythm in the fly's activity, which is only influenced by climate under extremely unfavourable conditions of temperature or humidity.The distribution ofG. longipalpisin the Gold Coast is dependent upon the humidity of the ecoclimate, rather than upon temperature. It occurs in three main vegetational types—Transition Forest, Inland Savannah Forest, and Coastal Savannah— where the range of humidities is between 50 and 80 per cent. R.H., and temperature between 75° and 85°F. It does not occur in the Rain Forest, where the relative humidity is constantly above 80 per cent., or in northern Savannah, where the humidity is as low as 30 per cent, in the dry season.The main breeding season was from March to July with its maximum in May, at the height of the rains.This species was found infected withTrypanosoma gambiense,T. congolense, andT. vivaxat Takoradi, and is probably second in importance toG. palpalisas a vector of sleeping sickness in the Gold Coast, but at present of less importance thanG. palpalisorG. tachinoidesin the transmission of trypanosomiasis of stock.The receding of the Ashanti forest and the present development of the Colony may cause even greater contact between this species of tsetse and man. The main policy for control should lie in improving and controlling the natives' methods of cultivating the bush. Farms should be as close to the village as possible, contiguous, and kept under cultivation, if possible, permanently. Clearings should be made of at least 100 yards width round bush villages, and of at least 200 yards width round important towns. Small clearings and isolated farms are considered a danger.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Zhu ◽  
Anchi Wu ◽  
Guoyi Zhou

AbstractPhosphorus (P) is an important element in terrestrial ecosystems and plays a critical role in soil quality and ecosystem productivity. Soil total P distributions have undergone large spatial changes as a result of centuries of climate change. It is necessary to study the characteristics of the horizontal and vertical distributions of soil total P and its influencing factors. In particular, the influence of climatic factors on the spatial distribution of soil total P in China’s forest ecosystems remain relatively unknown. Here, we conducted an intensive field investigation in different forest ecosystems in China to assess the effect of climatic factors on soil total P concentration and distribution. The results showed that soil total P concentration significantly decreased with increasing soil depth. The spatial distribution of soil total P increased with increasing latitude and elevation gradient but decreased with increasing longitude gradient. Random forest models and linear regression analyses showed that the explanation rate of bioclimatic factors and their relationship with soil total P concentration gradually decreased with increasing soil depths. Variance partitioning analysis demonstrated that the most important factor affecting soil total P distribution was the combined effect of temperature and precipitation factor, and the single effect of temperature factors had a higher explanation rate compare with the single effect of precipitation factors. This work provides a new farmework for the geographic distribution pattern of soil total P and the impact of climate variability on P distribution in forest ecosystems.


2021 ◽  
Vol 13 (2) ◽  
pp. 313
Author(s):  
Yongfang Xu ◽  
Zhaohui Lin ◽  
Chenglai Wu

Central Asia is prone to wildfires, but the relationship between wildfires and climatic factors in this area is still not clear. In this study, the spatiotemporal variation in wildfire activities across Central Asia during 1997–2016 in terms of the burned area (BA) was investigated with Global Fire Emission Database version 4s (GFED4s). The relationship between BA and climatic factors in the region was also analyzed. The results reveal that more than 90% of the BA across Central Asia is located in Kazakhstan. The peak BA occurs from June to September, and remarkable interannual variation in wildfire activities occurs in western central Kazakhstan (WCKZ). At the interannual scale, the BA is negatively correlated with precipitation (correlation coefficient r = −0.66), soil moisture (r = −0.68), and relative humidity (r = −0.65), while it is positively correlated with the frequency of hot days (r = 0.37) during the burning season (from June to September). Composite analysis suggests that the years in which the BA is higher are generally associated with positive geopotential height anomalies at 500 hPa over the WCKZ region, which lead to the strengthening of the downdraft at 500 hPa and the weakening of westerlies at 850 hPa over the region. The weakened westerlies suppress the transport of water vapor from the Atlantic Ocean to the WCKZ region, resulting in decreased precipitation, soil moisture, and relative humidity in the lower atmosphere over the WCKZ region; these conditions promote an increase in BA throughout the region. Moreover, the westerly circulation index is positively correlated (r = 0.53) with precipitation anomalies and negatively correlated (r = −0.37) with BA anomalies in the WCKZ region during the burning season, which further underscores that wildfires associated with atmospheric circulation systems are becoming an increasingly important component of the relationship between climate and wildfire.


1965 ◽  
Vol 7 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Miroslav Penka
Keyword(s):  

2021 ◽  
Author(s):  
Xuhui Zhou ◽  
Lingyan Zhou ◽  
Yanghui He ◽  
Yuling Fu ◽  
Zhenggang Du ◽  
...  

Abstract Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Recent studies suggest that climate warming can differentially affect root and shoot biomass, and subsequently alter root: shoot ratio. However, warming effects on root: shoot ratio and their underlying drivers at a global scale remain unclear. Using a global synthesis of >300 studies, we here show that warming significantly increases biomass allocation to roots (by 13.1%), and two factors drive this response: mean annual precipitation of the site, and the type of mycorrhizal fungi associated with a plant. Warming-induced allocation to roots is greater in relatively drier habitats compared to shoots (by 15.1%), but lower in wetter sites (by 4.9%), especially for plants associated with arbuscular mycorrhizal fungi compared to ectomycorrhizal fungi. Root-biomass responses to warming predominantly determine the biomass allocation in terrestrial plants suggesting that warming can reinforce the importance of belowground resource uptake. Our study highlights that the wetness or dryness of a site and plants’ mycorrhizal associations strongly regulate terrestrial carbon cycle by altering biomass allocation strategies in a warmer world.


Sign in / Sign up

Export Citation Format

Share Document