Silver Nanoparticles: Neurotoxic and Neurodegenerative Effects

2018 ◽  
Vol 2 (08) ◽  
Author(s):  
Kayla Dean ◽  
Felicia Jefferson

With advances in the development of nanotechnology and increases in the production and practical application of artificial nanoparticles (NPs) and nanomaterials (NMs), health effects of these products are increasingly of interest. Among the most prominent NMs, one variant that has garnered significant attention is silver nanoparticles. Silver nanoparticles (Ag-NPs) are small metallic colloidal particles that are widely used in the engineering, manufacturing, and biomedicine sectors. Today there are many consumer products that contain various silver nanoparticles, particularly for their anti-microbial properties, yet its impact on health has not adequately been evaluated. Early studies show silver nanoparticles contribute to neurotoxic and neurodegenerative effects in vivo. This paper evaluates not only the benefits of silver nanoparticles but the adverse consequences that humans and other organisms may face during extended interaction with silver nanomaterials. Given the particles cross the blood-brain barrier (BBB), specific attention has been placed on the neurological effects of silver nanoparticles. Given the urgency for more information and scientific evaluation on the increasing use of silver nanoparticles, there is still a need for more efficient experimentation methods in the testing of silver nanoparticle toxicity and brain and behavioral effects.

2018 ◽  
Vol 2 (10) ◽  
Author(s):  
Kayla Dean ◽  
Felicia Jefferson

With advances in the development of nanotechnology and increases in the production and practical application of artificial nanoparticles (NPs) and nanomaterials (NMs), health effects of these products are increasingly of interest. Among the most prominent NMs, one variant that has garnered significant attention is silver nanoparticles. Silver nanoparticles (Ag-NPs) are small metallic colloidal particles that are widely used in the engineering, manufacturing, and biomedicine sectors. Today there are many consumer products that contain various silver nanoparticles, particularly for their anti-microbial properties, yet its impact on health has not adequately been evaluated. Early studies show silver nanoparticles contribute to neurotoxic and neurodegenerative effects in vivo. This paper evaluates not only the benefits of silver nanoparticles but the adverse consequences that humans and other organisms may face during extended interaction with silver nanomaterials. Given the particles cross the blood-brain barrier (BBB), specific attention has been placed on the neurological effects of silver nanoparticles. Given the urgency for more information and scientific evaluation on the increasing use of silver nanoparticles, there is still a need for more efficient experimentation methods in the testing of silver nanoparticle toxicity and brain and behavioral effects.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Adnan Haider ◽  
Inn-Kyu Kang

Silver nanoparticles (Ag-NPs) have diverted the attention of the scientific community and industrialist itself due to their wide range of applications in industry for the preparation of consumer products and highly accepted application in biomedical fields (especially their efficacy against microbes, anti-inflammatory effects, and wound healing ability). The governing factor for their potent efficacy against microbes is considered to be the various mechanisms enabling it to prevent microbial proliferation and their infections. Furthermore a number of new techniques have been developed to synthesize Ag-NPs with controlled size and geometry. In this review, various synthetic routes adapted for the preparation of the Ag-NPs, the mechanisms involved in its antimicrobial activity, its importance/application in commercial as well as biomedical fields, and possible application in future have been discussed in detail.


2021 ◽  
Author(s):  
Constantinos Chrysikopoulos ◽  
Anastasios A. Malandrakis ◽  
Nektarios Kavroulakis ◽  
Anthi Stefanarou

<div><span>The potential of silver nanoparticles (Ag-NPs) to control plant pathogen <em>Monilia</em><em>fructicola </em>and to deter environmental contamination by reducing fungicide doses was evaluated <em>in vitro </em>and <em>in vivo. </em> </span>F<span>ungitoxicity screening </span>of <em><span>M. fructicola </span></em><span>isolates resulted in the detection of 18 benzimidazole-resistant (BEN-R) isolates with reduced sensitivity to fungicides  thiophanate methyl (TM)  and carbendazim. All resistant isolates caried the E198A resistance mutation in their </span><em><span>β</span>-</em>tubulin gene, target site of the benzimidazole fungicides. <span>Ag-NPs could effectively control both sensitive (BEN-S) and resistant isolates while the combination of Ag-NPs with TM significantly enhanced their fungitoxic effect both <em>in vitro </em>and in apple fruit tests. The positive correlation observed between Ag-NPs and TM+Ag-NPs treatments indicates a mixture-enhanced Ag-NPs activity/availability as a possible mechanism of synergy. No correlation between Ag-NPs  and AgNO<sub>3 </sub>could  be found suggesting difference(s) in the fungitoxic mechanism of action between Nps and their bulk/ionic counterparts. Indications of the involvement of energy (ATP) metabolism in the mode of action of Ag-NPs were also evident by the synergy observed between Ag-NPs and the </span>oxidative phosphorylation<span>-uncoupler fluazinam (FM) against both BEN-R and BEN-S phenotypes. The role of silver ions release on the inhibitory action of Ag-NPs against the fungusis probably limited since the AgNPs/NaCl combination enhanced fungitoxicity, a fact that could not be justified by the expected binding of silver with chlorine ions. Concluding, Ag-NPs can be effectively used as a means of controlling both BEN-S and BEN-R <em>M. </em><em>fructicola </em>isolates </span>while <span>their combination with conventional fungicides should aid anti-resistant strategies and reduce the environmental impact of synthetic fungicides by reducing effective doses to the control the pathogen.</span></div>


2018 ◽  
Vol 2 (08) ◽  
Author(s):  
Kayla Dean ◽  
Felicia Jefferson

Within the previous few years major advances in the development of nanotechnologies and practical application of artificial nanoparticles (NPs) and nanomaterials (NMs) have resulted. As society becomes further aware that the use of nanomaterials is ever growing in consumer products and their presence in the environment, critical interest on the impact of this emerging technology has grown. A major concern is whether the unknown risks of engineered nanoparticles, in particular, their impact on health and environment, outweighs their established benefits to society. The goal is to evaluate their potential toxicity in the environment. Silver nanoparticles exhibit an important effect on microbial processes in environmental exposures. This study provides a brief review over the current state-of-knowledge about AgNPs from various studies in this area, including the history, analysis, source, transport, fate, and potential risks of AgNPs. In order to fully investigate the transport and fate of AgNPs in the environment, appropriate methods for the pre-concentration, separation, and speciation of AgNPs should be developed, and analytical tools for the characterization and detection of AgNPs in complicated environmental studies must be incorporated.


The Analyst ◽  
2016 ◽  
Vol 141 (18) ◽  
pp. 5382-5389 ◽  
Author(s):  
Trang H. D. Nguyen ◽  
Peng Zhou ◽  
Azlin Mustapha ◽  
Mengshi Lin

Silver nanoparticles (Ag NPs) are one of the top five engineered nanoparticles that have been used in various products.


Author(s):  
Karim Samy El-Said ◽  
Ahmed Ahmed El-Barbary ◽  
Hazem M. ElKholy ◽  
Ahmed S. Haidyrah ◽  
Mohamed Betiha ◽  
...  

Reaction of 2-mercapto-3-phenylquinazolin-4(3H)-one (MPQ) with both 4-vinyl benzyl chloride and allyl bromide furnished the reactive heterocyclic monomers 3-phenyl-2-((4-vinylbenzyl) thio) quinazolin-4(3H)-one (PVTQ) and 2-(allylthio)-3-phenylquinazolin-4(3H)-one (APQ), respectively. Copolymerization of PVTQ monomer with styrene and methyl methacrylate in the presence of 2,2′-azobisisobutyronitrile (AIBN) afforded the copolymers PS-co-PPVTQ and PMMA-co-PPVTQ, respectively. Similarly, copolymerization of monomer APQ with styrene and methyl methacrylate (MMA) afforded the copolymers PS-co-PAPQ and PMMA-co-PAPQ, respectively. The resulted copolymers were characterized by using FT-IR, 1H-NMR and GPC techniques. Silver nanocomposites of PS, PMMA, PS-co-PPVTQ, PMMA-co-PPVTQ, PS-co-PAPQ and PMMA-co-PAPQ were synthesized by the addition of silver nitrate into the polymer solution. The reduction of silver ions into silver nanoparticles was performed in DMF and water. Thermogravimetric (TGA) analysis was used to determine the thermal stability of the copolymers and their silver nanocomposites. The X-ray diffraction (XRD) analysis indicated the amorphous structures of the co-polymers and confirmed the formation of silver nanoparticles. The antitumor and antibacterial activities were screened for the copolymers and enhanced by the formation of their silver nanocomposites. In vivo antitumor activity in Ehrlich Ascitic Carcinoma (EAC) mice model showed that PS-co-PPVTQ/Ag NPs, PMMA-co-PPVTQ/Ag NPs, and PMMA-co-PAPQ/Ag NPs displayed promising inhibitory effects against EAC and induce apoptosis against MCF-7 cells.


Acta Naturae ◽  
2013 ◽  
Vol 5 (3) ◽  
pp. 107-115 ◽  
Author(s):  
E. A. Melnik ◽  
Yu. P. Buzulukov ◽  
V. F. Demin ◽  
V. A. Demin ◽  
I. V. Gmoshinski ◽  
...  

Silver nanoparticles (NPs), widely used in the manufacture of various types of consumer products and for medical applications, belong to novel types of materials that pose potential risks to human health. The potential negative effects of the influence of these NPs on reproduction are insufficiently researched. A quantitative assessment of the transfer of metallic silver nanoparticles through the placenta and breast milk was carried out during an in vivo experiment. We used 34.9 14.8 nm in size silver NPs that were stabilized by low-molecularweight polyvinylpyrrolidone and labeled with the 110mAg radioactive isotope using thermal neutron irradiation in a nuclear reactor. [110mAg]-labeled NPs preparations were administered intragastrically via a gavage needle to pregnant (20th day of gestation) or lactating (14-16th day of lactation) female rats at a dose of 1.69-2.21 mg/kg of body weight upon conversion into silver. The accumulation of NPs in rat fetuses and infant rats consuming their mothers breast milk was evaluated using a low-background semiconductor gamma-ray spectrometer 24 and 48 hours following labeling, respectively. In all cases, we observed a penetration of the [110mAg]-labeled NPs through the placenta and ther entry into the mothers milk in amounts exceeding by 100-1,000 times the sensitivity of the utilized analytical method. The average level of accumulation of NPs in fetuses was 0.085-0.147% of the administered dose, which was comparable to the accumulation of the label in the liver, blood, and muscle carcass of adult animals and exceeded the penetration of NPs across the hematoencephalic barrier into the brain of females by a factor of 10-100. In lactating females, the total accumulation of [110mAg]-labeled NPs into the milk exceeded 1.94 0.29% of the administered dose over a 48 h period of lactation; not less than 25% of this amount was absorbed into the gastrointestinal tract of infant rats. Thus, this was the first time experimental evidence of the transfer of NPs from mother to offspring through the placenta and breast milk was obtained.


2012 ◽  
Vol 14 (4) ◽  
Author(s):  
Priscila Tavares ◽  
Fernanda Balbinot ◽  
Hugo Martins de Oliveira ◽  
Gabriela Elibio Fagundes ◽  
Mireli Venâncio ◽  
...  

2020 ◽  
Vol 38 (1B) ◽  
pp. 1-5
Author(s):  
Ruqayah A. Salman ◽  
Abdulrahman K. Ali ◽  
Amenah Ali Salman

The study aims to investigate the effects of silver nanoparticles (Ag NPs) on the seminiferous tubules in Albino rats. Several in vitro studies have been performed in different cell models, using various nanoparticles. Pure and spherical AgNPs with an average size of 30 nm, was injected into two groups of male albino rats (6 rats for each group) in different doses. Histopathological changes in testis tissues were showed a harmful effect of the silver nanoparticles, manifested by reducing the number of spermatogenic cells, and a decrease in the number of leyidg´s cells (group 1), and hypotrophy in seminiferous and enlargement in interstitial spaces in group 2.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Stefano Sivolella ◽  
Edoardo Stellini ◽  
Giulia Brunello ◽  
Chiara Gardin ◽  
Letizia Ferroni ◽  
...  

Silver (Ag) ions have well-known antimicrobial properties and have been applied as nanostrategies in many medical and surgical fields, including dentistry. The use of silver nanoparticles (Ag NPs) may be an option for reducing bacterial adhesion to dental implant surfaces and preventing biofilm formation, containing the risk of peri-implant infections. Modifying the structure or surface of bone grafts and membranes with Ag NPs may also prevent the risk of contamination and infection that are common when alveolar bone augmentation techniques are used. On the other hand, Ag NPs have revealed some toxic effects on cellsin vitroandin vivoin animal studies. In this setting, the aim of the present paper is to summarize the principle behind Ag NP-based devices and their clinical applications in alveolar bone and dental implant surgery.


Sign in / Sign up

Export Citation Format

Share Document