scholarly journals Agricultural Waste As Silica Source In Tio2/Sio2 Synthesis For Photocatalytic Degradation Of Dye Compounds

Khazanah ◽  
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Nawwal Hikmah ◽  
◽  
Dewi Agustiningsih ◽  
Elma Retna Dewi ◽  
Nyayu Shafiyah Mahira ◽  
...  

Titanium dioxide (TiO2) is one of semiconductor material which has been used as photocatalyst that has very good potency to oxidize some hazardous organic compounds like dye waste, medical and pharmacological waste, and etc. Although TiO2 has high oxidation capacity for photocatalytic degradation, it has some deficiencies which can limit its application as photocatalyst. Those deficiencies are TiO2 is easily agglomerated, its charge carrier is conveniently formed as recombination, and it has low surface area. This article provides a review of a composite which consists of TiO2 as the dispersed phase and SiO2 as the matrix, this composite has better photacatalytic performance than TiO2 itself. SiO2 can increase the surface area of TiO2, prevent the agglomeration of TiO2 particle, and avoid the recombination of TiO2’s charge carrier. Consequently, it can improve the ability of TiO2 to do photocatalytic degradation. Agricultural wastes that consist of high silica content is potentially used as the resource of SiO2 in this composite and biosilica that is produced from natural waste has biocompatible and biodegradable properties. This article also provides it’s application for various dye photocatalytic degradation.

2018 ◽  
Vol 7 (4.38) ◽  
pp. 1376
Author(s):  
Pornnipa Khaosomboon ◽  
Kulyakorn Khuanmar ◽  
Panomchai Weerayutsil

The purpose of this research was to synthesize zeolite-A (Ze-A) and zeolite-Y (Ze-Y) using silica sources from silica gel waste, and also improving adsorption capacity with Fe which was trapped in the synthesized zeolites:  Ze-Fe-A and Ze-Fe-Y. All synthesized zeolites were tested with lead solution of 40 mg/L at pH 5. For BET specific surface area, the parent Ze-A and Ze-Y presented surface area of 27.02 and 211.42 m2/g, respectively, whereas Ze-Fe-A and Ze-Fe-Y presented a lower surface area of 10.90 and 28.22 m2/g, respectively. SEM and TEM image demonstrated the cubic and polygon shapes for Ze-A and Ze-Y, respectively, while their modification with Fe presented more round shape. Additionally, both modified zeolites with Fe presented higher adsorption efficiency than their parents. Although the modified zeolites gave lower surface area, the efficiency removal of lead showed higher capacity than zeolite without Fe. It could be concluded that the adsorption mechanism of modified zeolites did not only rely on physical adsorption, but also on chemical adsorption.      


2012 ◽  
Vol 512-515 ◽  
pp. 1980-1985
Author(s):  
Ya Jun Luo ◽  
Xue Li ◽  
Xiao Li Hu ◽  
Deng Liang He ◽  
Peng Lin

SiO2aerogel is prepared under normal conditions by taking tetraethyl orthosilicate (TEOS) as the silica source, N-hexane as the displacer, trimethylchlorosilane hexane as the modifier and hydrolysis environment provided by hydrochloric acid and ammonia water. The effect of pH value, time, temperature, initial concentration on the adsorption of nitrobenzene by aerogel has been studied. The results show that the best range of the pH value for adsorption is 10.72. When adsorption time is 100 min, adsorption equilibrium can be reached. The best temperature for adsorption is 40 °C. The adsorption capacity becomes larger with the concentration increasing of the nitrobenzene solution. When the concentration reaches 500 mg/L, the adsorption reaches 32.402 mg/g. The adsorption equation matches Langmuir model. Scanning Electron Microscopes (SEM), infrared absorption spectrum and specific surface area measurements have shown that the adsorption property of SiO2aerogel for the nitrobenzene is related to cellular structure of the aerogel and large specific surface area.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
Victoria Ezeagwula ◽  
Precious Igbokwubiri

Abstract Bamboo trees are one of the fastest growing trees in tropical rainforests around the world, they have various uses ranging from construction to fly ash generation used in oil and gas cementing, to development of activated carbon which is one of the latest uses of bamboo trees. This paper focuses on development of activated carbon from bamboo trees for carbon capture and sequestration. The need for improved air quality becomes imperative as the SDG Goal 12 and SDG Goal13 implies. One of the major greenhouse gases is CO2 which accounts for over 80% of greenhouse gases in the environment. Eliminating the greenhouse gases without adding another pollutant to the environment is highly sought after in the 21st century. Bamboo trees are mostly seen as agricultural waste with the advent of scaffolding and other support systems being in the construction industry. Instead of burning bamboo trees or using them for cooking in the local communities which in turn generates CO2 and fly ash, an alternative was considered in this research work, which is the usage of bamboo trees to generate activated, moderately porous and high surface area carbon for extracting CO2 from various CO2 discharge sources atmosphere and for water purification. This paper focuses on the quality testing of activated carbon that can effectively absorb CO2. The porosity, pore volume, bulk volume, and BET surface area were measured. The porosity of the activated carbon is 27%, BET surface area as 1260m²/g. Fixed carbon was 11.7%, Volatility 73%, ash content 1.7%.


2016 ◽  
Vol 11 (2) ◽  
pp. 93 ◽  
Author(s):  
Nijhuma Kayal ◽  
Nahar Singh

<p>The objective of the work was to develop pure silica with high surface area from rice husk by chemical and heat treatment. The silica samples were characterized in terms of chemical composition, particle size distribution, morphology and surface area. The amount of silica was determined by a modified volumetric method. The trace impurities in silica were quantitatively determined by inductive coupled plasma atomic emission spectroscopy (ICP-AES). A 99% silica powder with surface area 282 m<sup>2</sup>/gm could be produced by chemical and heat treatment at 1000 ºC for 2 h.</p>


2021 ◽  
Author(s):  
Ramratan Guru ◽  
Anupam Kumar ◽  
Rohit Kumar

This research work has mainly utilized agricultural waste material to make a good-quality composite sheet product of the profitable, pollution free, economical better for farmer and industries. In this study, from corn leaf fibre to reinforced epoxy composite product has been utilized with minimum 35 to maximum range 55% but according to earlier studies, pulp composite material was used in minimum 10 to maximum 27%. Natural fibre-based composites are under intensive study due to their light weight, eco-friendly nature and unique properties. Due to the continuous supply, easy of handling, safety and biodegradability, natural fibre is considered as better alternative in replacing many structural and non-structural components. Corn leaf fibre pulp can be new source of raw material to the industries and can be potential replacement for the expensive and non-renewable synthetic fibre. Corn leaf fibre as the filler material and epoxy as the matrix material were used by changing reinforcement weight fraction. Composites were prepared using hand lay-up techniques by maintaining constant fibre and matrix volume fraction. The sample of the composites thus fabricated was subjected to tensile, impact test for finding the effect of corn husk in different concentrations.


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Eryani . ◽  
Sri Aprilia ◽  
Farid Mulana

<p>Agricultural waste such as rice straw, rice husk and rice husk ash have not been utilized properly. This waste of agricultural produce can actually be used as an alternative to bionanofiller because it contains an excellent source of silica. The silica content contained in the rice waste when combined with the polymer matrix can produce composites having high thermal and mechanical properties. Characterization of bionanofiller from this rice waste is done by SEM, XRF, FTIR, XRD and particle density. The result of SEM analysis from this rice waste is feasible to be used as filler because it has size 1 μm. Likewise with the results of XRF analysis that rice waste contains a high enough silica component that is 80.6255% - 89.83%. FTIR test results also show that bionanoparticles from rice waste have the same content of silica. In the XRD analysis the best selective gain of rice waste is found in rice husk ash which is characteristic of amorp silica at a range of 2ϴ = 22<br />. The largest density analysis of paddy waste was found in rice husk 0.0419 gr / cm , followed by rice straw by of 0.0417 gr / cm 3 and rice hulk ash 0.0407 g / cm 3</p>


2012 ◽  
Vol 724 ◽  
pp. 33-36 ◽  
Author(s):  
Jong Oh Kim ◽  
Seung Pil Choi ◽  
Geon Tae Kim ◽  
Yong Hak Kim

We evaluated the treatment efficiency of humic acid using Ti and anodized TiO2metal plate with/without Fe-doping. Variation of humic acid concentration after 60 minutes of UV irradiation in the case of Ti only, Fe-Ti, TiO2only and Fe-TiO2was about 3.0%, 5.5%, 9.8% and 9.2%, respectively. . It is found that hypochromic effect was revealed in all cases with respect to doping time. Fe doping method is considered to be effective for humic acid degradation in spite of relatively low surface area of Ti and anodized TiO2metal plate.


2018 ◽  
Vol 29 (5) ◽  
pp. 1112-1118 ◽  
Author(s):  
Yuanhui Wang ◽  
Jieyu Chen ◽  
Xinrong Lei ◽  
Yuujie Ren ◽  
Ji Wu

2018 ◽  
Vol 94 (4) ◽  
pp. 633-640 ◽  
Author(s):  
Bharath Velaga ◽  
Pradeep P. Shanbogh ◽  
Diptikanta Swain ◽  
Chandrabhas Narayana ◽  
Nalini G. Sundaram

Sign in / Sign up

Export Citation Format

Share Document