scholarly journals ASSESSMENT OF GROUNDWATER QUALITY FOR IRRIGATION AT MALAMAWI ISLAND, BASILAN, PHILIPPINES

2020 ◽  
Vol 4 (2) ◽  
pp. 187-200
Author(s):  
Alejandro A. Jalil ◽  
◽  
Roger A. Luyun, Jr ◽  
Aurelio A. Delos Reyes, Jr ◽  
Victorino A. Bato ◽  
...  

The assessment of groundwater quality for agricultural purposes was conducted in Malamawi Island, Isabela City, Basilan. Groundwater quality wasevaluated based on the FAO irrigation quality standards (1994)which include salinity and alkalinity, sodium, magnesium, bicarbonate hazards and chloride hazards. Spatial delineation of groundwater quality parameters was carried out using QGIS software. Results revealed that the use of groundwater from two separate sampling wells (SW4 and SW6) in Lukbuton area require slight to moderate restrictionbased on the parameters of electrical conductivity and magnesium hazard. This means that its groundwater can still be safe for irrigation but with little salinity hazard on sensitive crops.Also, the chloride concentration in SW4 indicates that groundwater was slightly poor in quality but generally suitasble for irrigation while in SW6, the calcium concentration was considered unsuitable for irrigation. In the same way, the sampling wells 1 and 3 in Santa Barbara and Lukbuton were considered unsafe and unsuitable for irrigation in terms of magnesium hazard. Also, the calcium content of groundwater in some part of the island was considered unsuitable for irrigating high-value crops. Therefore, this study suggests that some management is needed in the northeastern part of Lukbuton because of its poor ground water quality for irrigation in terms of salinity.

2020 ◽  
Vol 24 (4) ◽  
pp. 699-705
Author(s):  
G. Shyamala ◽  
S. Ramesh ◽  
N. Saravanakumar

Hydrogeochemical characteristics of Groundwater analyzed in the study area of Coimbatore district by collecting 60 samples from agricultural belt. Groundwater quality for irrigation is determined by several key factors like pH, Electrical conductivity (EC), Total suspended solids (TDS). The cations such as Sodium (Na+), Potassium (K+), Calcium (Ca2+), Magnesium (Mg2+ ) and anions are Hydrocarbon (HCO3), Carbonate (CO3 -), Chlorides (Cl-)and Sulphates (SO4 2-) are tested. The irrigation water quality parameters such as Residual Sodium Carbonate (RSC), Sodium Absorption Ratio (SAR), Chloro Alkali Indices (CA I & CAII), Kelley’s Ratio (KR), Magnesium Hazard (MH), Percent sodium (%Na) and Permeability Index (PI), Soluble sodium Percent (SSP) are computed from the key factors, anions and cations. From the USSL Diagram the samples fall in C2S1, C3S1, C4S1 range. Salinity hazard is too elevated in the study area, all the samples are categorized under high to very high with the values greater than 750 μS/cm. Total dissolved solid in the study area indicated that only 2 locations are unfit for irrigation. SAR and % Na shows that there is no hazard related to irrigation watering. Magnesium hazard in the groundwater is high and indicates 51 sample out of 60 is unsuitable for irrigation. From the study it indicates the groundwater is contaminated with salt content and in most of the area it can be used for irrigation. Keywords: Groundwater, Irrigation water quality, Salinity hazard, Kelley’s ratio, Magnesium hazard


Author(s):  
Senthilkumar M ◽  
Ganesh N ◽  
Chidambaram S ◽  
Thilagavathi R ◽  
Banajarani Panda

Hard rock aquifer is the most predominant in the southern peninsula exclusively in Tamil Nadu, India. Virudhunagar district is situated in the South west part of Tamil Nadu, mostly of hard rock topography. Groundwater plays a major role in this area contributing to domestic, irrigation and industrial practices. Running down of groundwater by extreme consumption and less recharge in the study area has reduced the level of groundwater. On the other hand, intensive domestic, agriculture and industrial practices impacts the quality of quality of groundwater as well. Hydro geochemistry plays an important role in evaluation of suitability of groundwater for its usage in several purposes. A total of 72 samples from North East Monsoon (NEM) and Post Monsoon (POM) has been analyzed hydrochemically. The irrigation quality parameters such as sodium adsorption ratio (SAR), %Na, Residual Sodium Carbonate (RSC), Kelley’s index and Magnesium hazard were calculated using CHIDAM software 2020 in conjunction with USSL and Doneen diagrams. During NEM, EC and TDS ranges from 273 to 5869 mg/L and 194 to 4159 mg/L and during POM is from 235 to 6850 mg/L and 233.8 to 6916 mg/L. The hydrogeochemical facies represents that Ca-HCO3 and mixed Ca-Mg-Cl facies are predominant during NEM and Na-Cl and mixed Ca-Mg-Cl are predominant during POM. The higher concentration of TDS and EC in the samples reflects the unsuitability of groundwater in both seasons.


2021 ◽  
Author(s):  
Jabar Abdul Bari ◽  
Karthikeyan Perumal ◽  
Subagunasekar Muthuramalingam

Abstract In most regions of the present study area, Bhavani Taluk, groundwater quality is deteriorating at an alarming rate as a result of anthropogenic activities, however, little attention was given to groundwater quality and management. This research examines the quality of groundwater in Bhavani Taluk, Tamilnadu and compares its suitability for irrigation. The Bhavani region of Erode District, Tamilnadu is the most cultivated, with a considerable use of fertilizers and pesticides. Groundwater quality for irrigation purposes was assessed during the pre-monsoon season by collecting samples from 53 different locations. Physico-chemical parameters such as pH, EC, TDS, HCO3−, CO32−, Cl−, SO42−, NO3−, Ca2+, Mg2+, Na+ and K+were measured in these groundwater samples. Irrigation quality measures such as salinity hazard, sodium hazard expressed as SAR, percentage of sodium (% Na), and permeability index (PI) were calculated to evaluate groundwater quality for agricultural irrigation. Based on the classification of Electrical conductivity (EC) most of the groundwater samples are falling under the permissible limit. As per the USSL diagram, the large majority of groundwater samples fall within the category of C3-S1 and the water is suitable for irrigation. Piper trilinear diagram interpretations were made to know the chemical type of the groundwaters. The piper diagram indicates that 50% of the groundwater sample were belongs to Mg2+, Ca2+, HCO3−, and Cl−. The groundwater samples fall under Class I category according to Doneen’s Classifications.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4720
Author(s):  
Arlindo César Matias Pereira ◽  
Helison de Oliveira Carvalho ◽  
Danna Emanuelle Santos Gonçalves ◽  
Karyny Roberta Tavares Picanço ◽  
Abrahão Victor Tavares de Lima Teixeira dos dos Santos ◽  
...  

This study aimed to evaluate and compare the effects of co-treatment with purified annatto oil (PAO) or its granules (GRA, Chronic®) with that of testosterone on the orchiectomy-induced osteoporosis in Wistar rats. After surgery, rats were treated from day 7 until day 45 with testosterone only (TES, 7 mg/kg, IM) or TES + PAO or GRA (200 mg/kg, p.o.). The following parameters were evaluated: food/water intake, weight, HDL, LDL, glucose, triglycerides (TG), total cholesterol (TC), alkaline phosphatase levels, blood phosphorus and calcium contents, femur weight, structure (through scanning electron microscopy), and calcium content (through atomic absorption spectrophotometry). Our results show that orchiectomy could significantly change the blood lipid profile and decrease bone integrity parameters. Testosterone reposition alone could improve some endpoints, including LDL, TC, bone weight, and bone calcium concentration. However, other parameters were not significantly improved. Co-treatment with PAO or GRA improved the blood lipid profile and bone integrity more significantly and improved some endpoints not affected by testosterone reposition alone (such as TG levels and trabeculae sizes). The results suggest that co-treatment with annatto products improved the blood lipid profile and the anti-osteoporosis effects of testosterone. Overall, GRA had better results than PAO.


Author(s):  
Yaqoob Iqbal Memon ◽  
Sundus Saeed Qureshi ◽  
Imdad Ali Kandhar ◽  
Naeem Ahmed Qureshi ◽  
Sumbul Saeed ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Sadik Mahammad ◽  
Aznarul Islam

AbstractIn recent years, groundwater pollution has become increasingly a serious environmental problem throughout the world due to increasing dependency on it for various purposes. The Damodar Fan Delta is one of the agriculture-dominated areas in West Bengal especially for rice cultivation and it has a serious constraint regarding groundwater quantity and quality. The present study aims to evaluate the groundwater quality parameters and spatial variation of groundwater quality index (GWQI) for 2019 using the fuzzy analytic hierarchy process (FAHP) method. The 12 water quality parameters such as pH, TDS, iron (Fe−) and fluoride (F−), major anions (SO42−, Cl−, NO3−, and HCO3−), and cations (Na+, Ca2+, Mg2+, and K+) for the 29 sample wells of the study area were used for constructing the GWQI. This study used the FAHP method to define the weights of the different parameters for the GWQI. The results reveal that the bicarbonate content of 51% of sample wells exceeds the acceptable limit of drinking water, which is maximum in the study area. Furthermore, higher concentrations of TDS, pH, fluoride, chloride, calcium, magnesium, and sodium are found in few locations while nitrate and sulfate contents of all sample wells fall under the acceptable limits. The result shows that 13.79% of the samples are excellent, 68.97% of the samples are very good, 13.79% of the samples are poor, and 3.45% of the samples are very poor for drinking purposes. Moreover, it is observed that very poor quality water samples are located in the eastern part and the poor water wells are located in the northwestern and eastern part while excellent water quality wells are located in the western and central part of the study area. The understanding of the groundwater quality can help the policymakers for the proper management of water resources in the study area.


2011 ◽  
Vol 15 (9) ◽  
pp. 2763-2775 ◽  
Author(s):  
A. Bárdossy

Abstract. For many environmental variables, measurements cannot deliver exact observation values as their concentration is below the sensitivity of the measuring device (detection limit). These observations provide useful information but cannot be treated in the same manner as the other measurements. In this paper a methodology for the spatial interpolation of these values is described. The method is based on spatial copulas. Here two copula models – the Gaussian and a non-Gaussian v-copula are used. First a mixed maximum likelihood approach is used to estimate the marginal distributions of the parameters. After removal of the marginal distributions the next step is the maximum likelihood estimation of the parameters of the spatial dependence including taking those values below the detection limit into account. Interpolation using copulas yields full conditional distributions for the unobserved sites and can be used to estimate confidence intervals, and provides a good basis for spatial simulation. The methodology is demonstrated on three different groundwater quality parameters, i.e. arsenic, chloride and deethylatrazin, measured at more than 2000 locations in South-West Germany. The chloride values are artificially censored at different levels in order to evaluate the procedures on a complete dataset by progressive decimation. Interpolation results are evaluated using a cross validation approach. The method is compared with ordinary kriging and indicator kriging. The uncertainty measures of the different approaches are also compared.


Author(s):  
Nguyen Hai Au ◽  
Tran Minh Bao ◽  
Pham Thi Tuyet Nhi ◽  
Tat Hong Minh Vy ◽  
Truong Tan Hien ◽  
...  

Groundwater in Phu My town is exploited essentially in Pleistocene aquifer and, used for many purposes like irrigation, domestic, production and animal husbandry. In this study, Groundwater Quality Index (EWQI) is calculated with Entropy weight method to determine the suitability of groundwater quality in study area. This method demonstrates the objectivity of each parameter calculated based on the degree of variability of each value and depends on the sample data source. The groundwater samples were collected from 17 wells in dry and wet seasons in 2017 with ten water quality parameters (pH, TDS, TH, Cl-, F-, NH4+-N, NO3--N, SO42-, Pb và Fe2+) were selected for analysising. The analysis results indicate groundwater quality is divided into 4 categories in this study area. In particular, over 70% of wells are "very good" water quality in both dry and wet seasons. Only 6% of wells are " water unsuitable for drinking purpose" of the total number of mornitoring wells in the study area.


2018 ◽  
Vol 38 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Sihem Hedjal ◽  
Derradji Zouini ◽  
Abdelwaheb Benamara

AbstractThe wetland complex of Guerbes-Sanhadja (north-eastern Algeria), has experienced in recent years a certain economic expansion, particularly agricultural, about 47% of the useful agricultural area marked by several varieties of crops ranging from market gardening to speculative crops, requiring large quantities of water for irrigation purposes, however the swampy areas are the main sources used for irrigation purposes in this practice. It is therefore necessary for this water to have physicochemical properties adapted to plants, in particular the absence of salinity. This study was done to evaluate the status of the swamps areas quality and its suitability for irrigated agriculture. To achieve this objective, water samples from ten swamps areas water were collected from Guerbes-Sanhadja in February and June of 2016. The water quality of these swamps was estimated from different water quality parameters such as pH and electrical conductivity (EC), the chemical parameters like Na+, K+, Ca2+, HCO3−, SO42−, Cl−, BOD5, NO3−, NO2−, NH4+ and PO43−. Based on the physico-chemical analyses, irrigation quality parameters like sodium absorption ratio (SAR), percent sodium (% Na), residual sodium carbonate (RSC), permeability index (PI), magnesium hazard (MH) were calculated. The results showed that the overall concentration of nitrate was very high. About 60 percent of the swampy areas had suitable water quality for chloride, and they had a concentration below the permissible limit for crop irrigation. From the Richards diagram, it is observed that most of the samples from the study area fall in the good to permissible classes for irrigation purpose.


2019 ◽  
Vol 14 (1) ◽  
pp. 159-169
Author(s):  
S.K. Bhardwaj ◽  
R. Sharma ◽  
R.K. Aggarwal

Sirsa river runs through the central part of the Baddi Barotiwala Nalagarh (BBN) industrial region in district Solan of Himachal Pradesh. The water of this river is used for irrigating agricultural fields by the farmers. The increased industrial and urbanization activities in the valley are being pointed out as the cause of river water pollution by the farmers and other habitations in the region. Therefore, such reports prompted the idea to conduct this study to assess the river water suitability for irrigational commitments. Thus, Sirsa river water quality was assessed during the year 2018 by taking seven sampling sites as treatments which were replicated six times. To assess the suitability of Sirsa river water for irrigation purposes, various quality parameters such as pH, Electrical Conductivity (EC), Sodium Adsorption Ratio (SAR), Soluble Sodium Percentage (SSP), Residual Sodium Carbonate (RSC), Permeability Index (PI), Kelly’s Ratio (KR), Magnesium Hazard (Mg. Haz.)and Chloro-Alkaline Index (CAI) were determined. In the Sirsa river water pH, EC,RSC,SSP,SAR,PI,KR,Mg Hazand CAI were found in the range of 6.64-7.55, 129.50-719.67 µS/cm, -5.27 - -2.18 meq/l, 13.49-49.44%, 0.41-4.00%, 28.20-57.89%, 2.94-21.24%, 14.97-37.83%and 0.04-0.58%, respectively. All the factors were within the safe range for irrigation purposes except KR values. The high KR values above unity pointed out towards sodicity hazard of water which, therefore can not be used for irrigation purposes.


Sign in / Sign up

Export Citation Format

Share Document