scholarly journals Experimental Investigation of Mechanical Behavior in 3D Printed PLA Triply Periodic Minimal Surface Structure for Orthopedics

2020 ◽  
Vol 13 (1) ◽  
pp. 181-186
Author(s):  
N. Nandakumar ◽  
T.Allwin Raja

This project is related to the design, fabrication and characterization of scaffold structures of different structure Using Polylactic Acid (PLA) filament, the micro bone structures are manufactured by Fused Deposition Modeling (FDM). Such morphology is chosen for its good strength, high porosity leading to good nutrient and waste diffusion, and favorable mechanical properties. Load vs Displacement values are obtained by taking compression tests for each as an overall outcome of the research, microstructure with better mechanical properties to replace the damaged bone tissues is identified.

Author(s):  
Abigail Chaffins ◽  
Mohan Yu ◽  
Pier Paolo Claudio ◽  
James B. Day ◽  
Roozbeh (Ross) Salary

Abstract Fused deposition modeling (FDM), is a direct-write material extrusion additive manufacturing process, which has emerged as a method of choice for the fabrication of a wide range of biological tissues and structures. FDM allows for non-contact, multi-material deposition of a broad spectrum of functional materials for tissue engineering applications. However, the FDM process is intrinsically complex, consisting of a multitude of parameters as well as material-machine interactions, which may adversely influence the mechanical properties, the surface morphology, and ultimately the functional integrity of fabricated bone scaffolds. Hence, process optimization in addition to physics-based characterization of the FDM process would be inevitably a need. The overarching goal of this research work is to fabricate biocompatible, porous bone scaffolds, incorporating autologous human bone marrow mesenchymal stem cells (hBMSCs), for the treatment of osseous fractures, defects, and eventually diseases. The objective of this work is to investigate the mechanical properties of several triply periodic minimal surface (TPMS) bone scaffolds, fabricated using fused deposition modeling (FDM) additive manufacturing process. In this study, biocompatible TPMS bone scaffolds were FDM-deposited, based on a medical-grade polymer composite, composed of polyamide, polyolefin, and cellulose fibers (named PAPC-II). In addition, the experimental characterization of the TPMS bone scaffolds was on the basis of a single factor experiment. The compression properties of the fabricated bone scaffolds were measured using a compression testing machine. Furthermore, a digital image processing program was developed in the MATLAB environment to characterize the morphological properties of the fabricated bone scaffolds.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 258 ◽  
Author(s):  
Xiaohui Song ◽  
Wei He ◽  
Huadong Qin ◽  
Shoufeng Yang ◽  
Shifeng Wen

In this work Macadamia nutshell (MS) was used as filler in fused deposition modeling (FDM) of Poly (lactic acid) (PLA) composites filaments. Composites containing MS both treated and untreated with alkali and silane were investigated by means of Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), Thermogravimetry (TG), scanning electron microscopy (SEM). The results showed that the treated MS composites had better thermal stability. Furthermore, compression tests were carried out. The PLA with 10 wt% treated MS composite was found possessing the best mechanical properties which was almost equivalent to that of the pure PLA. Finally, porous scaffolds of PLA/10 wt% treated MS were fabricated. The scaffolds exhibited various porosities in range of 30–65%, interconnected holes in size of 0.3–0.5 mm, micro pores with dimension of 0.1–1 μm and 37.92–244.46 MPa of elastic modulus. Those values indicated that the FDM of PLA/MS composites have the potential to be used as weight lighter and structural parts.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4008
Author(s):  
Zhengkai Feng ◽  
Heng Wang ◽  
Chuanjiang Wang ◽  
Xiujuan Sun ◽  
Shuai Zhang

Fused deposition modeling (FDM) has the advantage of being able to process complex workpieces with relatively simple operations. However, when processing complex components in a suspended state, it is necessary to add support parts to be processed and formed, which indicates an excessive dependence on support. The stress intensity of the supported positions of the printing components can be modified by changing the supporting model of the parts, their density, and their distance in relation to the Z direction in the FDM printing settings. The focus of the present work was to study the influences of these three modified factors on the stress intensity of the supporting position of the printing components. In this study, 99 sets of compression tests were carried out using a position of an FDM-supported part, and the experimental results were observed and analyzed with a 3D topographic imager. A reference experiment on the anti-pressure abilities of the printing components without support was also conducted. The experimental results clarify how the above factors can affect the anti-pressure abilities of the supporting positions of the printing components. According to the results, when the supporting density is 30% and the supporting distance in the Z direction is Z = 0.14, the compressive strength of the printing component is lowest. When the supporting density of the printing component is ≤30% and the supporting distance in the Z direction is Z ≥ 0.10, the compressive strength of printing without support is greater than that of the linear support model. Under the same conditions, the grid-support method offers the highest compressive strength.


2017 ◽  
Vol 23 (4) ◽  
pp. 804-810 ◽  
Author(s):  
Shiqing Cao ◽  
Dandan Yu ◽  
Weilan Xue ◽  
Zuoxiang Zeng ◽  
Wanyu Zhu

Purpose The purpose of this paper is to prepare a new modified polybutylene terephalate (MPBT) for fused deposition modeling (FDM) to increase the variety of materials compatible with printing. And the printing materials can be used to print components with a complex structure and functional mechanical parts. Design/methodology/approach The MPBT, poly(butylene terephalate-co-isophthalate-co-sebacate) (PBTIS), was prepared for FDM by direct esterification and subsequent polycondensation using terephthalic acid (PTA), isophthalic acid (PIA), sebacic acid (SA) and 1,4-butanediol (BDO). The effects of the content of PIA (20-40 mol%) on the mechanical properties of PBTIS were investigated when the mole per cent of SA (αSA) is zero. The effects of αSA (0-7mol%) on the thermal, rheological and mechanical properties of PBTIS were investigated at nPTA/nPIA = 7/3. A desktop wire drawing and extruding machine was used to fabricate the filaments, whose printability and anisotropy were tested by three-dimensional (3D) printing experiments. Findings A candidate content of PIA introducing into PBT was obtained to be about 30 per cent, and the Izod notched impact strength of PBTIS increased with the increase of αSA. The results showed that the PBTIS (nPTA/nPIA = 7/3, αSA = 3-5mol%) is suitable for FDM. Originality/value New printing materials with good Izod notched impact strength were obtained by introducing PIA and SA (nPTA/nPIA = 7/3, αSA = 3-5 mol%) into PBT and their anisotropy are better than that of ABS.


2021 ◽  
pp. 089270572110530
Author(s):  
Nagarjuna Maguluri ◽  
Gamini Suresh ◽  
K Venkata Rao

Fused deposition modeling (FDM) is a fast-expanding additive manufacturing technique for fabricating various polymer components in engineering and medical applications. The mechanical properties of components printed with the FDM method are influenced by several process parameters. In the current work, the influence of nozzle temperature, infill density, and printing speed on the tensile properties of specimens printed using polylactic acid (PLA) filament was investigated. With an objective to achieve better tensile properties including elastic modulus, tensile strength, and fracture strain; Taguchi L8 array has been used for framing experimental runs, and eight experiments were conducted. The results demonstrate that the nozzle temperature significantly influences the tensile properties of the FDM printed PLA products followed by infill density. The optimum processing parameters were determined for the FDM printed PLA material at a nozzle temperature of 220°C, infill density of 100%, and printing speed of 20 mm/s.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 465
Author(s):  
Roberto Scaffaro ◽  
Maria Clara Citarrella ◽  
Emmanuel Fortunato Gulino ◽  
Marco Morreale

In this work, an innovative green composite was produced by adding Hedysarum coronarium (HC) flour to a starch-based biodegradable polymer (Mater-Bi®, MB). The flour was obtained by grinding together stems, leaves and flowers and subsequently sieving it, selecting a fraction from 75 μm to 300 μm. Four formulations have been produced by compression molding (CM) and fused deposition modeling (FDM) by adding 5%, 10%, 15% and 20% of HC to MB. The influence of filler content on the processability was tested, and rheological, morphological and mechanical properties of composites were also assessed. Through CM, it was possible to obtain easily homogeneous samples with all filler amounts. Concerning FDM, 5% and 10% HC-filled composites proved also easily printable. Mechanical results showed filler effectively acted as reinforcement: Young’s modulus and tensile strengths of the composites increased from 74.3 MPa to 236 MPa and from 18.6 MPa to 33.4 MPa, respectively, when 20% of HC was added to the pure matrix. FDM samples, moreover, showed higher mechanical properties if compared with CM ones due to rectilinear infill and fibers orientation. In fact, regarding the 10% HC composites, Young’s modulus of the CM and FDM ones displayed a relative increment of 176% and 224%, respectively.


2021 ◽  
Vol 6 (2) ◽  
pp. 119
Author(s):  
Nanang Ali Sutisna ◽  
Rakha Amrillah Fattah

The method of producing items through synchronously depositing material level by level, based on 3D digital models, is named Additive Manufacturing (AM) or 3D-printing. Amongs many AM methods, the Fused Deposition Modeling (FDM) technique along with PLA (Polylactic acid) material is commonly used in additive manufacturing. Until now, the mechanical properties of the AM components could not be calculated or estimated until they've been assembled and checked. In this work, a novel approach is suggested as to how the extrusion process affects the mechanical properties of the printed component to obtain how the parts can be manufactured or printed to achieve improved mechanical properties. This methodology is based on an experimental procedure in which the combination of parameters to achieve an optimal from a manufacturing experiment and its value can be determined, the results obtained show the effect of the extrusion process affects the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document