scholarly journals Features of ultrafiltration purification of industrial solutions of starch and treacle production

Author(s):  
S. I. Lazarev ◽  
O. A. Kovaleva ◽  
K. V. Shestakov ◽  
K. K. Polyanskii

The paper examines the specific output stream and the rate of detention of a semi-permeable ultrafiltration membranes, UPM, UAM150, UAM200 in the separation process, waste starch and syrup production JSC., the company "Krakhmaloprodukt" low-pressure baromembrane method. As a result of the analysis of experimental data, the dependence of the retention factor of ultrafiltration membranes UPM-K, UAM150, UAM20 at different concentrations of the dissolved substance was obtained and analyzed. For the theoretical calculation of the process of ultrafiltration separation technology solutions of starch and syrup production modified mathematical expression for the factor of detention and the specific output stream and the numerical values of the empirical coefficients. Ultrafiltration for the separation of waste starch and syrup production the technological scheme of purification, separating the main elements of which was the pre-filter, biofilter, cascade ultrafiltration apparatus, centrifugal and plunger pumps, as well as the adsorption column.The application expediency of the selected apparatus with flat chambers lies in the simplicity of their production technology and in the self-selection possibility of optimum type membranes. It is possible in the presented apparatuses to usemembranes of different types and in the course of the evaluation experiment to establish to what extent they correspond to the most important technological parameters of the process, such as specific output flow, retention factor and resistance to pollution. It is noted that the specific output flow of ultrafiltration membranes decreases with the increase of the initial concentration of the dissolved substance, as the viscosity of the solution increases and its osmotic pressure increases, and the decrease in the retention factor of ultrafiltration membranes is caused by the formation of diffusion boundary layers on the active layer of membranes.

Author(s):  
Irina V. Khorokhorina ◽  
Sergey I. Lazarev ◽  
Yuri M. Golovin ◽  
Dmitry S. Lazarev

The basic structural characteristics of the membrane and kinetic dependences of the electron-filtration separation of wastewater of the brassing process are investigated. The retention factor and the specific output flow for the near-anode and near-cathode membrane were calculated. The dependences of the retention factor and the specific output flow on the transmembrane pressure and current density are analyzed, and it is noted that the anode membrane as a result of the application of a constant electric potential to the membrane-solution system starts to clog and a sludge layer forms on its surface due to the electrochemical process. A comparison is made of the retention capacity of OPMN-P and OPMN-K membranes for a real spent technological solution after the process of brazing and a model solution containing the same concentrations of copper ions (Cu2+) and zinc (Zn2+) as in real runoff. The structural characteristics of nanofiltration membranes of the type OFAM-K and OPMN-P were studied and analyzed. Changes in the crystalline and amorphous phases of the active layer and the membrane substrate are considered. The change in crystalline parameters in crystallites can be explained only by the structural features of macromolecules of polyamide and their orientation during crystallization. Under the action of transmembrane pressure and transport of water molecules, the polymorphism of the packing of the crystal lattice occurs. The packing density of the amorphous phases of the working membrane decreases, which affects the transport and selective properties of the membrane. In fact, the deformation of an amorphous-crystalline polymer leads to a restructuring of the structure not only in the orientation of the macromolecules of the amorphous, but also the crystalline phases of the membranes. It was also noted that the packing density of the amorphous phases of the working membrane decreases, which affects the transport and selective properties of the membrane.


Author(s):  
D. A. Rodionov ◽  
S. I. Lazarev ◽  
K. K. Polyansky ◽  
E. V. Eckert

Experimental data on the retention coefficient and the output specific flow are obtained. The test solutions were goat and cow's milk whey after obtaining cheese. The description, general view and technological scheme of a pilot installation of a tubular type are given. The studies were carried out on semipermeable tubular type ultrafiltration membranes manufactured by AO "ZAVKOM". Based on the studies, graphical dependences of the retention coefficient on the specific output stream were constructed and analyzed. During the analysis, it was noted that with an increase in the output specific flow of the solvent, the retention coefficient decreases. The reason for this is the boundary layers of fat and protein formed in the near-membrane layers, which prevents the passage of protein molecules through the pores of the membrane. Also during the experiment, it was noted that goat milk serum has a more oily structure and requires prior separation. For the theoretical calculation of the retention coefficient and specific output stream, mathematical expressions are developed and numerical values of the values of empirical coefficients are obtained. The developed mathematical expressions describe the experimental data with good confidence. The obtained experimental and calculated data can be used with great reliability in the calculations of mass-transported flows of substances through semipermeable membranes, as well as in engineering methods for calculating and predicting the effectiveness of the use of membrane processes for the concentration of whey.


Author(s):  
D. A. Rodionov ◽  
S. I. Lazarev ◽  
D. N. Protasov ◽  
O. A. Abonosimov ◽  
K. K. Polyansky

For the qualitative application of ultrafiltration processes for the concentration and purification of food solutions, both experimental studies and a mathematical description of the processes of the membrane separation process of solutions from the standpoint of the development of computational mathematical models are required. In this work, by analytical solution of equations, that is, by the method of finite differences, mathematical equations are solved. To obtain the system, the flow continuity equations, convective diffusion equations, Navier-Stokes equations and flow equations with boundary conditions were solved in order to build a mathematical model of the process of ultrafiltration protein concentration in cheese whey in the production of rennet cheeses. As a result of the analytical solution of the equations, a system of mathematical equations was obtained that allows one to construct a profile of changes in the flow rates of the solution along the cross-section of the intermembrane channel and to determine the protein concentration in cheese whey along the length of the tubular ultrafiltration element BTU 05/2 of industrial type. The obtained mathematical model makes it possible to theoretically describe the process of ultrafiltration protein concentration in cheese whey along the entire length of the membrane channel of the tubular element under laminar and transient regimes of solution flow. The resulting system of mathematical equations makes it possible to find the numerical values of the mass flow rate of cheese whey, make it possible to calculate the specific output flow when the transmembrane pressure changes and to calculate the concentration of solutes in the secondary milk raw materials on the left and right ultrafiltration membrane of the intermembrane channel. The adequacy of the developed mathematical model was carried out by comparing the calculated and experimental data on the specific output flow when the transmembrane pressure in the intermembrane channel changes from 0.1 to 0.25 MPa with ultrafiltration concentration of cheese whey. The deviation of the calculated data found by the mathematical model from experimental studies obtained on a semi-industrial tubular ultrafiltration plant BTU 05/2 using semipermeable membranes, in which the active layer is made of fluoroplastic, hemisulphone and polyethersulfone, did not exceed 10%.


Author(s):  
Sergey I. Lazarev ◽  
Sergey V. Kovalev ◽  
Dmitry N. Konovalov ◽  
Olga A. Kovaleva

The paper presents a generalized analysis of literature data on the current-voltage, omics characteristics and electrical conductivity of membrane systems. Based on an analysis of the literature, it is noted that electrodialysis is a promising method for the separation of solutions for the production of ammonium nitrate. An analysis of literature revealed that the application of an external constant electric field to the membrane separation of solutions containing charge-transporting components (nitrate ions and ammonium ions) causes the directed transfer of cations and anions through the membranes. The studies revealed that with the baromembrane separation of the studied solutions with increasing transmembrane pressure, the specific output stream increases. This is due to an increase in the driving force of the process. For the OFAM-K anode membrane, with an increase in the current density, with the electrobaromembrane separation of the ammonium nitrate solution, the specific output stream decreases, which is associated with a change in the pH value of the acidified anode permeate. nd for the OPMN-P cathode membrane, the specific output stream increases with a change in the pH of the alkalized cathode permeate. A modified mathematical equation is proposed for theoretical calculation of the specific output stream and the retention coefficient of the OFAM-K and OPMN-P nanofiltration membranes. Experimental studies of membrane systems equipped with the anode OFAM-K and the near-cathode OPMN-P membranes from voltage and transmembrane pressure revealed that for the aqueous solution of ammonium nitrate there are two characteristic periods on the current-voltage, omics characteristics and electrical conductivity of the membrane system (the first period is beyond regime, dissociation of water (H+ and OH-) at the phase boundary with the advent of additional electric current carriers, the second is the degradation of the active layer of a semipermeable membrane). When studying the current-voltage characteristics of a membrane system equipped with an anode OFAM-K and a near-cathode OPMN-P membranes, when separating model and technological solutions, a decrease in the total omics resistance of the system is observed, which is associated with the solution throttling process.


Author(s):  
Sergey I. Lazarev ◽  
Yuri V. Golovin ◽  
Irina V. Khorokhorina ◽  
Sergey V. Kovalev ◽  
Alexandr A. Levin

In work the generalized analysis of literary data on a research of relative permeability ratio of various types of porous organic and inorganic membranes was submitted. Application of a method of X-ray analysis of samples of the semipermeable ultrafiltrational membranes on a diffractometer of DRON-3 and a specific output flow on a flat-chamber ultrafiltration unit is shown. In materials of work the pilot and theoretical studies on isokinetic zones and structural characteristics of polymeric semipermeable membranes in the course of ultrafiltrational separation of the technological solutions containing the anionic and fissile surface substances are conducted. It is experimentally confirmed that kinetic curves on a specific output flow have two isokinetic zones. The first zone, the stage of the ultrafiltration process, proceeds quickly, lasts only a few minutes - 7.8 min and 13.05 min, the second zone is slower with duration of about 30 min and 60 min for ultrafiltration cellulose acetate membranes of the UAM-100 and UAM-50 series, respectively. The revealed isokinetic zones differ in characteristic times, which differ by orders of magnitude, and, as a result, the final kinetic dependence has an exponential form. The comparative analysis of roentgenograms allows to note coincidence of angles of diffraction, but significant redistribution of intensity of reflexes in air-dried and working sapless in the range of scattering angles 2θ from 8°-35°. The obtained experimental data and their comparison with literary, indicate the same set of the diffraction reflexes at corners 2θ = 17°; 22°; 25° for both samples of membranes that corresponds to the crystal reflexes of membranes created from polyamide fibers (nylon).


2019 ◽  
pp. 236-249
Author(s):  
Sergey Lazarev ◽  
Sergey Kovalev ◽  
Konstantin Shestakov

The aims of this work are developing the electrobaromembrane apparatus classification and study of the particular case of electrobaromembrane process application for wastewater treatment in engineering industries. The multilevel classification of electrobaromembrane processes, which takes into account several factors at once, is proposed. A particular case of electrobaromembrane process application for treatment of the galvanic solution produced by JSC "Zavod Tambovpolimermash" is studied in this work. The research was carried out on the experimental electrobaromembrane plant with flat chambers. In addition, some approximation functions and their numerical values of empirical coefficients were obtained for experimental data of the specific flow and the retention factor of membranes OPMN-P and AMN-P. The result comparison of nanofiltration and electronanofiltration processes shows that the permeability of the solution through the membrane pores increases when a constant electric current density is applied to the test system. During nanofiltration, process membranes are compacted due to the overpressure increase. This directly affects the driving force of the membrane separation process for a particular type of solution, thereby the retention factor of porous membranes increases. Retention factor values do not differ a lot for certain types of ions. In contrast, electronanofiltration process is characterized by the selectivity of membranes with respect to a certain type of ions. The near-cathode OPMN-P membrane mainly passes thought itself the Zn2+ cations and holds the Cl- and SO4 2- anions, while the near-anode AMN-P membrane mainly passes thought itself the Cl- and SO4 2- anions and holds the Zn2+ cations.


2020 ◽  
Author(s):  
◽  
Andris Ratkus

as made the technology more mainstream across a wider swathe of industries. Based on these industrial activities and the need for modification of metal coatings, a doctoral thesis has been developed with the theme: “Analysis of Material Surface Renewal Technologies and Research of Laser Cladding Technology”. The aim of the thesis is to clarify the influence of technological parameters and conditions on the characteristics of the coating obtained and to develop the mathematical expression for predicting the characteristics of the technologies for creating a layer of material. In addition, the following tasks have been defined: to undertake cladding experiments and analysis of the results by determining the dependence of the laser cladding characteristics on the cladding position and nozzle angle; to test the hardness of the coating and to determine the factors affecting the hardness in laser cladding; to give recommendations on the practical application of the technology for the restoration of both external and internal surface materials. The analysis of the technology for applying layers of material, the identification of the most important characteristics of the cladding, the development of experiments and the analysis of the results were performed in this work. It has been determined that the main technological advantages of quality and universality of products are achieved by means of laser cladding, which makes it possible to create small, local cladding. It has been assumed that the characteristics of the coating largely depend on the amount of material conveyed to the coating area which, in turn, is affected by the material feed rate and the speed of cladding. It has been experimentally confirmed that laser cladding technology is possible for all cladding positions, but the change of the position of the cladding, along with the nozzle angle, affects the flow of the material and the power intensity, which causes changes in the geometry of melt pool and affects the values of the coating characteristics, including its mechanical qualities. The hardness values of the laser coated materials have been determined and it was concluded that the nozzle angle, nozzle position, the shape of the laser point, the degree of coalescence of the cladding and the melt pool temperature all influence the hardness values of the cladding. In turn, the distribution of the temperature of the melt pool describes the nature of the hardness values of the cladding profile. Mathematical expressions have been developed in this work, to describe the characteristics of the laser cladding, with the introduction of a new laser cladding impact parameter that includes all the technological parameters used. The developed mathematical expression significantly improves the predictability of the technology and its application in production, in order to shorten the time of operation and improve the quality of the product. The results obtained are important for more extensive research and development in the field. The work provides valid recommendations for the practical realization of cladding.


Author(s):  
O. Yu. Kichigina

At production of stainless steel expensive alloying elements, containing nickel, are used. To decrease the steel cost, substitution of nickel during steel alloying process by its oxides is an actual task. Results of analysis of thermodynamic and experimental studies of nickel reducing from its oxide presented, as well as methods of nickel oxide obtaining at manganese bearing complex raw materials enrichment and practice of its application during steel alloying. Technology of comprehensive processing of complex manganese-containing raw materials considered, including leaching and selective extraction out of the solution valuable components: manganese, nickel, iron, cobalt and copper. Based on theoretical and experiment studies, a possibility of substitution of metal nickel by concentrates, obtained as a result of hydrometallurgical enrichment, was confirmed. Optimal technological parameters, ensuring high degree of nickel recovery out of the initial raw materials were determined. It was established, that for direct steel alloying it is reasonable to add into the charge pellets, consisting of nickel concentrate and coke fines, that enables to reach the through nickel recovery at a level of 90%. The proposed method of alloying steel by nickel gives a possibility to decrease considerably steel cost at the expense of application of nickel concentrate, obtained out of tails of hydrometallurgical enrichment of manganese-bearing raw materials, which is much cheaper comparing with the metal nickel.


Author(s):  
N. S. Tsarev ◽  
V. I. Aksenov ◽  
I. I. Nichkova

To neutralize the waste pickling solutions and rinsing water, resulting from cleaning metal products s surface of rust by acids solutions, lime is used. Being cheap, this method of sewage neutralization has considerable drawbacks. Forming in the technological pipes strong gypsum depositions and low specific productivity of the equipment for sediment dewatering are most significant of them. Characteristic of aggressive industrial sewage, formed at pickling of ferrous metals presented. Methods of elimination of drawbacks of industrial sewage neutralization by lime considered, including stabilization of neutralized industrial sewage and control of properties of the sediment formed. It was noted, that stability of the circulating water can be provided by accelerating of crystallization of the forming gypsum sediments by introducing in it fine priming powder and heating the neutralized water up to 65-70 °С followed by thermal softening of a part of circulating water, removed out of the circulating system. It was shown, that the heating of the water and the ongoing changes of the composition and properties of the sediment result in decrease of filtration resistance 2-3 folds, increase of deposition speed 3-4 folds and decrease the sediment volume 1.5-2 folds comparing with lime neutralization in cold water. Calculated dozes of lime at the heating were taken the same as at the regular lime neutralization. Elimination of the circulating water oversaturation by bi-water gypsum can be reached also by addition into the water of powder-like gypsum pulp - priming powder for microcrystals of the gypsum, followed by aeration during 30-40 min. This method was tested under industrial conditions. Technological properties of the forming sediment can be improved by sediment treatment by flocculants and preliminary heating of the neutralized water up to 65-70 °С. Control of technological properties of the sediment is done by addition of flocculants and heating of the neutralized water. Recommendations for improving operation of the neutralization facilities presented with indicating particular technological parameters of the equipment operation for sewage and sediment treatment. 


2010 ◽  
Vol 13 (4) ◽  
pp. 91-98
Author(s):  
Tuan Dinh Phan ◽  
Binh Thien Nguyen ◽  
Dien Khanh Le ◽  
Phuong Hoang Pham

The paper presents an application the research results previously done by group on the influence of technological parameters to the deformation angle and finish surface quality in order to choose technology parameters for the incremental sheet forming (ISF) process to produce products for the purpose of rapid prototyping or single-batch production, including all steps from design and process 3D CAD model, calculate and select the technological parameters, setting up manufacturing and the stage of post-processing. The samples formed successfully showed high applicability of this technology to practical work, the complex products with the real size can be produced in industries: automotive, motorcycle, civil...


Sign in / Sign up

Export Citation Format

Share Document