scholarly journals Curcumin a Multifaceted Compound with Hormetic Behaviour that Mediates an Intricate Crosstalk between Mitochondrial Biogenesis, Mitophagy, Mitophagic Death and Apoptosis

Author(s):  
Nathan Earl Rainey ◽  
Aoula Moustapha ◽  
Raphaelle Parker ◽  
Patrice Xavier Petit

Curcumin, found in the rhizome of turmeric, has extensive therapeutic promises via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown curcumin to be an effective treatment for multiple cancers. These effects are drived by curcumin's ability to induce G2/M cell cycle arrest, induction of autophagy, activation of apoptotic pathways, disruption of molecular signaling, inhibition of invasion and metastasis, and by increasing the efficacy of existing chemotherapeutics. Here we focused on the hormetic behaviour of curcumin. Frequently, low doses of toxins and other stressors not only are harmless but also activate an adaptive stress whereas high dose activates acute responses like autophagy and cell death. This phenomenon is referred to as hormesis. Many molecules that cause cell death elicite an initial autophagic step that is a cytoprotective mechanism relying on elimination of dysfunctional structures intracellular, notably by mitophagy. This phenomenon is considered as a primarily protective mechanism against stressors. At higher doses, cells undergo mitochondrial outer membrane permeabilization due to calcium release from the endoplasmic reticulum and die. Herein, we address the complex crosstalk between the induced mitochondrial biogenesis, mitochondrial destabilization accompanied by mitophagy and cell death that can also be at play.

Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 332 ◽  
Author(s):  
Blanca Cucarull ◽  
Anna Tutusaus ◽  
Miguel Subías ◽  
Milica Stefanovic ◽  
Tania Hernáez-Alsina ◽  
...  

Background: The multikinase inhibitor regorafenib, approved as second-line treatment for hepatocellular carcinoma (HCC) after sorafenib failure, may induce mitochondrial damage. BH3-mimetics, inhibitors of specific BCL-2 proteins, are valuable drugs in cancer therapy to amplify mitochondrial-dependent cell death. Methods: In in vitro and in vivo HCC models, we tested regorafenib’s effect on the BCL-2 network and the efficacy of BH3-mimetics on HCC treatment. Results: In hepatoma cell lines and Hep3B liver spheroids, regorafenib cytotoxicity was potentiated by BCL-xL siRNA transfection or pharmacological inhibition (A-1331852), while BCL-2 antagonism had no effect. Mitochondrial outer membrane permeabilization, cytochrome c release, and caspase-3 activation mediated A-1331852/regorafenib-induced cell death. In a patient-derived xenograft (PDX) HCC model, BCL-xL inhibition stimulated regorafenib activity, drastically decreasing tumor growth. Moreover, regorafenib-resistant HepG2 cells displayed increased BCL-xL and reduced MCL-1 expression, while A-1331852 reinstated regorafenib efficacy in vitro and in a xenograft mouse model. Interestingly, BCL-xL levels, associated with poor prognosis in liver and colorectal cancer, and the BCL-xL/MCL-1 ratio were detected as being increased in HCC patients. Conclusion: Regorafenib primes tumor cells to BH3-mimetic-induced cell death, allowing BCL-xL inhibition with A-1331852 or other strategies based on BCL-xL degradation to enhance regorafenib efficacy, offering a novel approach for HCC treatment, particularly for tumors with an elevated BCL-xL/MCL-1 ratio.


2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Nathan Earl Rainey ◽  
Aoula Moustapha ◽  
Patrice Xavier Petit

Curcumin has extensive therapeutic potential because of its antioxidant, anti-inflammatory, and antiproliferative properties. Multiple preclinical studies in vitro and in vivo have proven curcumin to be effective against various cancers. These potent effects are driven by curcumin’s ability to induce G2/M cell cycle arrest, induce autophagy, activate apoptosis, disrupt molecular signaling, inhibit invasion and metastasis, and increase the efficacy of current chemotherapeutics. Here, we focus on the hormetic behavior of curcumin. Frequently, low doses of natural chemical products activate an adaptive stress response, whereas high doses activate acute responses like autophagy and cell death. This phenomenon is often referred to as hormesis. Curcumin causes cell death and primarily initiates an autophagic step (mitophagy). At higher doses, cells undergo mitochondrial destabilization due to calcium release from the endoplasmic reticulum, and die. Herein, we address the complex crosstalk that involves mitochondrial biogenesis, mitochondrial destabilization accompanied by mitophagy, and cell death.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. SCI-42-SCI-42
Author(s):  
Anthony Letai ◽  
Matthew S. Davids ◽  
Triona Ni Chonghaile ◽  
Jing Deng ◽  
Luv Patel

Abstract Many, perhaps most, cancer chemotherapy agents kill cancer cells via the mitochondrial pathway of apoptosis that is controlled by the Bcl-2 family of proteins. Bcl-2 family proteins regulate commitment to cell death by controlling mitochondrial outer membrane permeabilization (MOMP). To better understand how cancer cells commit to apoptosis, and what drugs might make them commit to apoptosis, we have studied perturbing mitochondria with BH3 peptides that are derived from pro-death Bcl-2 family proteins. Using this provocative test, which we call BH3 profiling, we are able to measure how close a cell is to the threshold of apoptosis, a property we call “priming”. Priming corresponds to sensitivity to chemotherapy. Moreover, BH3 profiling can be used to detect dependence on Bcl-2 and Bcl-xL for survival, which predicts cytotoxic response to small molecule antagonists such as ABT-199 and ABT-263. In acute lymphoblastic leukemia, we find that dependence on either Bcl-2 or Bcl-xL varies from case to case, with very important consequences for sensitivity to ABT-199 and ABT-263. In chronic lymphocytic leukemia, ABT-199 has already demonstrated significant clinical activity that corresponds to its on-target activity in mitochondria in vitro. We have been testing how this in vitro mitochondrial activity in BH3 profiling assays might be translated into a useful clinical predictive biomarker. Finally, we can measure how short term incubation with many kinds of drugs, including targeted pathway inhibitors, can increase cancer cell priming, including for primary lymphoid malignancy cells. This short term increase in priming predicts subsequent cancer cell death, including in clinical treatment. We call this method “Dynamic BH3 Profiling” and are exploring how it might best be utilized in the clinic. Disclosures: Letai: Dana-Farber Cancer Institute: Patents & Royalties; AbbVie: Consultancy.


Parasitology ◽  
2020 ◽  
pp. 1-7
Author(s):  
Dawei Wang ◽  
Mengen Xing ◽  
Saeed El-Ashram ◽  
Yingying Ding ◽  
Xiao Zhang ◽  
...  

Abstract Toxoplasma gondii is an obligate intracellular protozoan parasite, which can infect almost all warm-blooded animals, including humans, leading to toxoplasmosis. Currently, the effective treatment for human toxoplasmosis is the combination of sulphadiazine and pyrimethamine. However, both drugs have serious side-effects and toxicity in the host. Therefore, there is an urgent need for the discovery of new anti-T. gondii drugs with high potency and less or no side-effects. Our findings suggest that lumefantrine exerts activity against T. gondii by inhibiting its proliferation in Vero cells in vitro without being toxic to Vero cells (P ≤ 0.01). Lumefantrine prolonged mice infected with T. gondii from death for 3 days at the concentration of 50 μg L−1 than negative control (phosphate-buffered saline treated only), and reduced the parasite burden in mouse tissues in vivo (P ≤ 0.01; P ≤ 0.05). In addition, a significant increase in interferon gamma (IFN-γ) production was observed in high-dose lumefantrine-treated mice (P ≤ 0.01), whereas interleukin 10 (IL-10) and IL-4 levels increased in low-dose lumefantrine-treated mice (P ≤ 0.01). The results demonstrated that lumefantrine may be a promising agent to treat toxoplasmosis, and more experiments on the protective mechanism of lumefantrine should be undertaken in further studies.


2020 ◽  
Author(s):  
Zhichao Xue ◽  
Vivian Wai Yan Lui ◽  
Yongshu Li ◽  
Jia Lin ◽  
Chanping You ◽  
...  

Abstract Background: Recent genomic analyses revealed that druggable molecule targets could only be detected in around 6% of nasopharyngeal carcinoma (NPC) patients. Yet, an addiction to dysregulated CDK4/6-cyclinD1 signalling pathway is an essential event in the pathogenesis of NPC. Using our newly established xenografts and cell lines derived from primary, recurrent and metastatic NPC, we aimed to evaluate the therapeutic efficacy of a specific CDK4/6 inhibitor, palbociclib, and its compatibility with other chemodrugs in treating NPC.Methods: The efficacy of single treatment of palbociclib on NPC models was first evaluated, followed by concurrent treatment with cisplatin or suberanilohydroxamic acid (SAHA). RNA sequencing was used to profile the related pathways in governing the drug response. Palbociclib-resistant NPC cell lines were also established to demonstrate if cisplatin could be used as a second-line treatment once the cells developed resistance to palbociclib. The efficacy of palbociclib treatment on cisplatin-resistant NPC cells was also examined. Results: Palbociclib single drug treatment was confirmed to have a cell cycle arresting effect of NPC cells in G1 phase in vitro. It also had a significant inhibitory effect in all the 6 NPC tumor models in vivo, with a substantial reduction in total tumor volume and proliferation marker Ki-67. Concurrent use of palbociclib dampened the cytotoxic effect of cisplatin in NPC cells in vitro. Notably, combination of palbociclib with SAHA resulted in synergistic cell death of NPC both in vitro and in vivo. Autophagy-associated cell death was found to be involved in the enhanced tumor growth inhibitory effect in the combined palbociclib+SAHA treatment. NPC cell lines trained to sustain growth in high dose of palbociclib and cisplatin remained sensitive in subsequent treatment of cisplatin or palbociclib respectively.Conclusions: This study provides essential evidences to position palbociclib as an alternative therapeutic option to NPC treatment, and to aware the effective administrative timing of palbociclib with other chemodrugs. The findings give the basis for planning of the first-in-human clinical trials of palbociclib regimens in NPC patients.


Author(s):  
Chun Guo ◽  
Keri L. Hildick ◽  
Juwei Jiang ◽  
Alice Zhao ◽  
Wenbin Guo ◽  
...  

Dysregulation of the mitochondrial fission machinery has been linked to cell death following ischemia. Fission is largely dependent on recruitment of Dynamin-related protein 1 (Drp1) to the receptor Mitochondrial fission factor (Mff) located on the mitochondrial outer membrane (MOM). Drp1 is a target for SUMOylation and its deSUMOylation, mediated by the SUMO protease SENP3, enhances the Drp1-Mff interaction to promote cell death in an oxygen/glucose deprivation (OGD) model of ischemia. Another interacting partner for Drp1 is the Bcl-2 family member Bcl-xL, an important protein in cell death and survival pathways. Here we demonstrate that preventing Drp1 SUMOylation by mutating its SUMO target lysines enhances the Drp1-Bcl-xL interaction in vivo and in vitro. Moreover, SENP3-mediated deSUMOylation of Drp1 promotes the Drp1-Bcl-xL interaction. Our data suggest that Mff primes Drp1 binding to Bcl-xL at the mitochondria and that Mff and Bcl-xL can interact directly, independent of Drp1, through their transmembrane domains. Importantly, SENP3 loss in cells subjected to OGD correlates with reduced Drp1-Bcl-xL interaction, whilst recovery of SENP3 levels in cells subjected to reoxygenation following OGD correlates with increased Drp1-Bcl-xL interaction. Expressing a Bcl-xL mutant with defective Drp1 binding reduces OGD plus reoxygenation-evoked cell death. Taken together, our results indicate that SENP3-mediated deSUMOlyation promotes an Mff-primed Drp1-Bcl-xL interaction that contributes to cell death following ischemia.


2021 ◽  
Author(s):  
Lei Chen ◽  
Yin Sun ◽  
Min Tang ◽  
Denglong Wu ◽  
Chi-Ping Huang ◽  
...  

Abstract Background. Androgen deprivation therapy (ADT) is a gold standard treatment for advanced PCa. However, most patients eventually develop the castration-resistant prostate cancer (CRPC) that progresses rapidly despite ongoing systemic androgen deprivation. While early studies indicated that high physiological doses of androgens might suppress rather than promote PCa cell growth in some selective CRPC patients, the exact mechanism of this opposite effect remains unclear. Results. we found that Enzalutamide-resistant (EnzR) CRPC cells can be suppressed by the high-dose-androgen DHT. Mechanism dissection suggested that a high-dose-DHT can suppress the circular RNA-BCL2 (circRNA-BCL2) expression via transcriptional regulation of its host gene BCL2. The suppressed circRNA-BCL2 can then alter the expression of miRNA-198 to modulate the AMBRA1 expression via direct binding to the 3′UTR of AMBRA1 mRNA. The consequences of high-dose-DHT suppressed circRNA-BCL2/miRNA-198/AMBRA1 signaling may then lead to induction of the autophagic cell death to suppress the EnzR CRPC cell growth. Preclinical studies using in vivo mouse models also demonstrated that AMBRA1-shRNA to suppress the autophagic cell death can weaken the effect of high-dose-DHT on EnzR CRPC tumors. Conclusion. Together, these in vitro and in vivo data provide new insights for understanding the mechanisms underlying high-dose-DHT suppression of the EnzR CRPC cell growth, indicating a potential therapy using high-dose-androgens to suppress CRPC progression in the future.


2020 ◽  
Author(s):  
Dawei Wang ◽  
Mengen Xing ◽  
Saeed El-Ashram ◽  
Yingying Ding ◽  
Xiaoyu Sang ◽  
...  

Abstract Background: Toxoplasma gondii is an obligate intracellular protozoan parasite, which can infect almost all warm-blooded animals, including humans, leading to toxoplasmosis. Currently, the effective treatment for human toxoplasmosis is the combination of sulfadiazine and pyrimethamine. However, both drugs have serious side effects and toxicity in the host. Therefore, there is an urgent need for the discovery of new anti-Toxoplasma drugs with high potency and less or no side-effects. Methods: The cytotoxicity of sulfadiazine and lumefantrine to Vero cells was evaluated by the methyl thiazolyl tetrazolium (MTT) assay. And MTT assay was also used to detect the inhibitory effects of lumefantrine on parasites invasion and proliferation. Flow cytometry was conducted to further verify parasites proliferation. qPCR was performed to evaluate the parasite load in the mice after lumefantrine treatment. In order to determine whether lumefantrine treatment enhances Th1 or Th2 cytokine response, IFN-γ, IL-4, and IL-10 levels in the serum of mice were determined. Results: Our findings suggest that lumefantrine exerts activity against T. gondii by inhibiting its replication and invasion of Vero cells in vitro without being toxic to the cells. Furthermore, lumefantrine protected mice with acute toxoplasmosis from death to a certain extent and reduced the parasite burden in mouse tissues in vivo. In addition, a significant increase in IFN-γ production was observed in high dose lumefantrine-treated mice while IL-10 and IL-4 levels increased in low dose lumefantrine-treated mice. Conclusions: The results of this study demonstrated that lumefantrine may be a promising agent to treat toxoplamosis, and more experiments on the protective mechanism of lumefantrine should be undertaken in further studies.Key words: Toxoplasma gondii, Lumefantrine, anti-Toxoplasma gondii, Invasion, Proliferation


2021 ◽  
Author(s):  
Yi Yan ◽  
Chengyu Xiang ◽  
Dingguo Zhang

Abstract PURPOSETo explore the protective mechanism of fasudil,a Rho kinase inhibitor, on acute cardiac injury induced by adriamycin(ADR).METHODSIn vitro investigations on H9C2 cell line, as well as an in vivo study in a mouse model of ADR-induced acute cardiomyopathy, were performed. In vitro, H9C2 cells were treated with fasudil for 30mins then incubated with ADR for 24 hours. Cells were collected for immunohistochemistry and western blot study, respectively. In vivo, C57BL6 mice were randomly divided into the following four groups: ①ADR group;②low-dose fasudil ( ADR+L);③high-dose fasudil ( ADR+H); and ④control group(CON). Animals were injected i.p 20 mg/kg ADR once in group①~③. And animals were injected i.p fasudil (2 or 10 mg/kg/day ) daily once for six times in group ②and ③,respectively. Blood samples and heart tissues were collected for assays.RESULTSIn vitro, fasudil treatment ameliorated ADR-induced immunofluorescence reaction of 8-OHdG, decreased the expression of TUNEL cells and protein of Bax、Caspase-3 and p53,and increased the expression of protein of Bcl-2 and SIRT 1. In the mouse model, administration of fasudil significantly ameliorated ADR-induced cardiac damage, suppressed cell apoptosis and senescence, ameliorated redox imbalance and DNA damage.CONCLUSIONFasudil has the protective effect on adriamycin induced acute cardiotoxicity, which partially attributed to its antioxidant, anti-senescence, and anti-apoptotic effects of inhibiting the RhoA/Rho kinase signaling pathway.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3709-3709
Author(s):  
Patricia Garrido Castro ◽  
Eddy HJ Van Roon ◽  
Sandra S Mimoso Pinhancos ◽  
Pauline Schneider ◽  
Mark JB Kerstjens ◽  
...  

Abstract BACKGROUND: Infant acute lymphoblastic leukaemia (ALL) is a rare but aggressive malignancy, mainly presenting with chromosomal rearrangements of the MLL (Mixed Lineage Leukaemia) gene locus on 11q23. The majority of these MLL rearrangements involve the translocation partners AF4, AF9 or ENL within the translocation events t(4;11)(q21;q23), t(9;11)(p22;q23) and t(11;19)(q23;p13.3), respectively. The resulting fusion genes, MLL-AF4, MLL-AF9 and MLL-ENL, code for chimeric transcription regulators acting as strong oncogenic drivers, rewriting the epigenetic landscape of the cell and profoundly altering gene expression. Consequently, these cytogenetic lesions define an ALL subtype both biologically and clinically distinct from other subtypes, strongly associated with drug resistance to first-line chemotherapeutics, high relapse rates and a dismal prognosis. Hence, novel treatment strategies which specifically target the underlying molecular pathobiology of this disease are urgently needed. AIMS: Previously, our group performed extensive patient cohort profiling on both transcript and epigenetic level in order to understand the molecular events underlying the disease, and identified histone deacetylase inhibitors (HDACi) as effective therapeutic drugs both in silico and in vitro. The aim of the current study was to elucidate potential molecular mechanisms by which the candidate HDACi Panobinostat is able to target MLL-rearranged ALL (MLLr-ALL) cells, and to confirm its efficacy in vivo using pre-clinical MLLr-ALL xenograft mouse models able to recapitulate the disease phenotype observed in humans. METHODS: Immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were injected intrafemurally with a MLL-AF4+ B-ALL cell line (SEM) genetically modified to express a luciferase reporter. These mice were subsequently either treated with low-dose (1mg/kg) or high-dose (5mg/kg) Panobinostat using a continuous 5-day-on-2-day-off regimen for a period of up to 12 weeks, or they were assigned to a control group and left untreated. Disease onset and progression was monitored using in vivo bioluminescence imaging, and systemic human ALL cell infiltration was determined by multi-colour flow cytometry and histochemistry. In addition, molecular changes induced by Panobinostat exposure in MLLr-ALL and non-MLLr-ALL cell lines were assessed in vitro using immunoblotting and cell death assays. RESULTS: High-dose Panobinostat resulted in a significantly and substantially delayed MLLr-ALL disease onset and progression in NSG mice when compared to controls; this was accompanied by a reduction of the systemic disease burden, as evidenced by significantly lower whole-body luminescence signals and substantially decreased splenomegaly. Furthermore, immunohistochemical and flow cytometric data showed hypocellularity and increased cell death in the BM of xenografted NSG mice treated with Panobinostat when compared to untreated control xenografts. This finding correlated well with in vitro results, where exposure with 5 nM Panobinostat induced cell death in MLLr-ALL cells, but not in non-MLLr ALL cells, as determined by both ANNEXINV/7AAD flow cytometry assays and immunoblotting. In addition, on a molecular level, in vitro exposure with Panobinostat induced histone H3 hyperacetylation in all leukaemic cell lines, but did not affect other histone modification marks investigated such as, i.e., histone H3K4 methylation or histone H3K79 methylation. A notable exception was observed in MLLr-ALL cell lines, where Panobinostat exposure correlated with a reduction in histone H2B ubiquitination, a histone modification recently reported to be pivotal for MLLr leukaemogenesis. Concomitantly, Panobinostat - or more generally - HDACi-mediated loss of H2B ubiquitination might play a role in the observed sensitivity of MLLr-ALL cell towards this drug class. CONCLUSIONS: Both the in vivo and the molecular in vitro results show the HDACi Panobinostat to have promising therapeutic potential against MLLr-ALL. Currently, we are investigating Panobinostat in combination with other epigenetic drugs in xenograft models with primary MLLr-ALL patient material in order to consolidate these observations, and to confirm HDACi as a novel powerful treatment strategy in MLLr-ALL. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document