scholarly journals Augmented Virtuality for Coastal Management: An Holistic Use of In-Situ and Remote Sensing for Large Scale Definition of Coastal Dynamics

Author(s):  
Sandro Bartolini ◽  
Alessandro Mecocci ◽  
Alessandro Pozzebon ◽  
Claudia Zoppetti ◽  
Duccio Bertoni ◽  
...  

In this paper the authors describe the architecture of a multidisciplinary data acquisition and visualization platform devoted to the management of coastal environments. The platform integrates heterogeneous data acquisition sub-systems that can be roughly divided in two main categories: remote sensing systems and in-situ sensing systems. Remote sensing solutions include aerial and underwater remote data acquisition while in-situ sensing solutions include the use of RFID tracers, Wireless Sensor Networks and imaging techniques. All the data collected by these subsystems are stored, integrated and fused on a single platform that is also in charge of data visualization. This last task is carried out according to the paradigm of Augmented Virtuality which foresees the augmentation of a virtually reconstructed environment with data collected in the real world. The described solution proposes a novel holistic approach where different disciplines concur, with different data acquisition techniques, to a large scale definition of coastal dynamics, in order to better describe and face the coastal erosion phenomenon. The overall framework has been conceived by the so-called Team COSTE, a joint research team between the Universities of Pisa, Siena and Florence.

2018 ◽  
Vol 7 (3) ◽  
pp. 92 ◽  
Author(s):  
Sandro Bartolini ◽  
Alessandro Mecocci ◽  
Alessandro Pozzebon ◽  
Claudia Zoppetti ◽  
Duccio Bertoni ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 2523
Author(s):  
Piero Gili ◽  
Marco Civera ◽  
Rinto Roy ◽  
Cecilia Surace

The concept and preliminary design of an unmanned lighter-than-air (LTA) platform instrumented with different remote sensing technologies is presented. The aim is to assess the feasibility of using a remotely controlled airship for the land monitoring of medium sized (up to 107 m2) urban or rural areas at relatively low altitudes (below 1000 m) and its potential convenience with respect to other standard remote and in-situ sensing systems. The proposal includes equipment for high-definition visual, thermal, and hyperspectral imaging as well as LiDAR scanning. The data collected from these different sources can be then combined to obtain geo-referenced products such as land use land cover (LULC), soil water content (SWC), land surface temperature (LSC), and leaf area index (LAI) maps, among others. The potential uses for diffuse structural health monitoring over built-up areas are discussed as well. Several mission typologies are considered.


1994 ◽  
Vol 160 ◽  
pp. 381-394
Author(s):  
Yves Langevin

The European Space Agency (ESA) has selected Rosetta as the next cornerstone mission, to be launched in 2003. The goal is to perfom one or more fly-bys to main belt asteroids, followed by a rendez-vous with an active comet. Advanced in situ analysis, both in the coma and on the surfaces of the nucleus, will be possible, as well as monitoring by remote sensing instruments of the nucleus and of the inner coma for a time span of more than one year, until perihelion. This paper outlines the scientific and technological choices done in the definition of the mission.


2020 ◽  
Vol 12 (17) ◽  
pp. 2774
Author(s):  
Marta Konik ◽  
Piotr Kowalczuk ◽  
Monika Zabłocka ◽  
Anna Makarewicz ◽  
Justyna Meler ◽  
...  

The Nordic Seas and the Fram Strait regions are a melting pot of a number of water masses characterized by distinct optical water properties. The warm Atlantic Waters transported from the south and the Arctic Waters from the north, combined with the melt waters contributing to the Polar Waters, mediate the dynamic changes of the year-to-year large-scale circulation patterns in the area, which often form complex frontal zones. In the last decade, moreover, a significant shift in phytoplankton phenology in the area has been observed, with a certain northward expansion of temperate phytoplankton communities into the Arctic Ocean which could lead to a deterioration in the performance of remote sensing algorithms. In this research, we exploited the capability of the satellite sensors to monitor those inter-annual changes at basin scales. We propose locally adjusted algorithms for retrieving chlorophyll a concentrations Chla, absorption by particles ap at 443 and 670 nm, and total absorption atot at 443 and 670 nm developed on the basis of intensive field work conducted in 2013–2015. Measured in situ hyper spectral remote sensing reflectance has been used to reconstruct the MODIS and OLCI spectral channels for which the proposed algorithms have been adapted. We obtained MNB ≤ 0.5% for ap(670) and ≤3% for atot(670) and Chla. RMS was ≤30% for most of the retrieved optical water properties except ap(443) and Chla. The mean monthly mosaics of ap(443) computed on the basis of the proposed algorithm were used for reconstructing the spatial and temporal changes of the phytoplankton biomass in 2013–2015. The results corresponded very well with in situ measurements.


2020 ◽  
Author(s):  
Tyler Mixa ◽  
Andreas Dörnbrack ◽  
Bernd Kaifler ◽  
Markus Rapp

<p>We present numerical simulations of a deep orographic gravity wave (GW) event observed by the ALIMA airborne lidar on 11-12 September 2019 over Southern Argentina. The measurements are taken from the 2019 SOUTHTRAC Campaign, employing a comprehensive suite of remote sensing and in-situ instruments onboard the HALO research aircraft to study the stratospheric GW hotspot over Tierra del Fuego and the Antarctic Peninsula. Wind conditions on 11-12 September exhibit local and large-scale directional shear from the ground to the polar night jet, creating a complex propagation environment supporting multiple orientations of GW propagation and strong potential for local GW breaking and secondary GW generation. Using high resolution numerical models, we simulate the 3D evolution of the orographic GW field to analyze<span> the remote sensing and in-situ measurements from the event.</span></p>


2020 ◽  
Vol 17 (21) ◽  
pp. 5355-5364
Author(s):  
Maria Paula da Silva ◽  
Lino A. Sander de Carvalho ◽  
Evlyn Novo ◽  
Daniel S. F. Jorge ◽  
Claudio C. F. Barbosa

Abstract. Given the importance of dissolved organic matter (DOM) in the carbon cycling of aquatic ecosystems, information on its seasonal variability is crucial. In this study we assess the use of optical absorption indices available in the literature based on in situ data to both characterize the seasonal variability of DOM in a highly complex environment and for application in large-scale studies using remote sensing data. The study area comprises four lakes located in the Mamirauá Sustainable Development Reserve (MSDR). Samples for the determination of colored dissolved organic matter (CDOM) and measurements of remote sensing reflectance (Rrs) were acquired in situ. The Rrs was used to simulate the response of the visible bands of the Sentinel-2 MultiSpectral Instrument (MSI), which was used in the proposed models. Differences between lakes were tested using the CDOM indices. The results highlight the role of the flood pulse in the DOM dynamics at the floodplain lakes. The validation results show that the use of the absorption coefficient of CDOM (aCDOM) as a proxy of the spectral slope between 275 and 295 nm (S275–295) during rising water is worthwhile, demonstrating its potential application to Sentinel-2 MSI imagery data for studying DOM dynamics on the large scale.


2019 ◽  
Author(s):  
Marcel König ◽  
Natascha Oppelt

Abstract. Melt ponds are key elements in the energy balance of Arctic sea ice. Observing their temporal evolution is crucial for understanding melt processes and predicting sea ice evolution. Remote sensing is the only technique that enables large-scale observations of Arctic sea ice. However, monitoring vertical melt pond evolution in this way is challenging because most of the optical signal reflected by a pond is defined by the scattering characteristics of the underlying ice. Without knowing the influence of melt water on the reflected signal, the water depth cannot be determined. To solve the problem, we simulated the way melt water changes the reflected spectra of bare ice. We developed a model based on the slope of the log-scaled remote sensing reflectance at 710 nm. We validated the model using 49 in situ melt pond spectra and corresponding depths from ponds on dark and bright ice. Retrieved pond depths are precise (RMSE = 2.81 cm) and highly correlated with in situ measurements (r = 0.89; p = 4.34e−17). The model further explains a large portion of the variation in pond depth (R2 = 0.74). Our results indicate that pond depth is retrievable from optical data under clear sky conditions. This technique is potentially transferrable to hyperspectral remote sensors on UAVs, aircraft and satellites.


2019 ◽  
Author(s):  
Maria Paula da Silva ◽  
Lino A. Sander de Carvalho ◽  
Evlyn Novo ◽  
Daniel S. F. Jorge ◽  
Claudio C. F. Barbosa

Abstract. Given the importance of DOM in the carbon cycling of aquatic ecosystems, information on its seasonal variability is crucial. This study assesses the use of available absorption optical indices based on in situ data to both characterize the seasonal variability of the DOM dynamics in a highly complex environment and their viability of being used for satellite remote sensing on large scale studies. The study area comprises four lakes located at the Mamirauá Sustainable Development Reserve (MSDR). Samples for the determination of coloured dissolved organic matter (CDOM) and remote sensing reflectance (Rrs) were acquired in situ. The Rrs was applied to simulate MSI visible bands and used in the proposed models. Differences between lakes were tested regarding CDOM indices. Significant difference in the average of aCDOM (440), aCDOM spectra and S275–295 were found between lakes located inside the flood forest and those near the river bank. The proposed model showed that aCDOM can be used as proxy of S275–295 during rising water with good validation results, demonstrating the potential of Sentinel/MSI imagery data in large scale studies on the dynamics of DOM.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2183
Author(s):  
Yong Li ◽  
Liqiao Tian ◽  
Wenkai Li ◽  
Jian Li ◽  
Anna Wei ◽  
...  

Integrated and intelligent in situ observations are important for the remote sensing monitoring of dynamic water environments. To meet the field investigation requirements of ocean color remote sensing, we developed a water color remote sensing-oriented unmanned surface vehicle (WC-USV), which consisted of an unmanned surface vehicle platform with ground control station, data acquisition, and transmission modules. The WC-USV was designed with functions, such as remote controlling, status monitoring, automatic obstacle avoidance, and water and meteorological parameter measurement acquisition, transmission, and processing. The key data acquisition module consisted of four parts: A floating optical buoy (FOBY) for collecting remote sensing reflectance ( R r s ) via the skylight-blocked approach; a water sample autocollection system that can collect 12 1-L bottles for analysis in the laboratory; a water quality measurement system for obtaining water parameters, including Chlorophyll-a (Chl-a), turbidity, and water temperature, among others; and meteorological sensors for measuring wind speed and direction, air pressure, temperature, and humidity. Field experiments were conducted to validate the performance of the WC-USV on 23–28 March 2018 in the Honghu Lake, which is the seventh largest freshwater lake in China. The tests proved the following: (1) The WC-USV performed well in terms of autonomous navigation and obstacle avoidance; (2) the mounted FOBY-derived R r s showed good precision in terms of the quality assurance score (QAS), which was higher than 0.98; (3) the Chl-a and suspended matters (SPM) as ocean color parameters measured by the WC-USV were highly consistent with laboratory analysis results, with determination coefficients (R2) of 0.71 and 0.77, respectively; and (4) meteorological parameters could be continuously and stably measured by WC-USV. Results demonstrated the feasibility and practicability of the WC-USV for automatic in situ observations. The USV provided a new way of thinking for the future development of intelligent automation of the aquatic remote sensing ground verification system. It could be a good option to conduct field investigations for ocean color remote sensing and provide an alternative for highly polluted and/or shallow high-risk waters which large vessels have difficulty reaching.


Sign in / Sign up

Export Citation Format

Share Document