scholarly journals Use of decision Tables to Simulate Management in Ecohydrological Models

Author(s):  
Jeffrey G. Arnold ◽  
Katrin Bieger ◽  
Michael J. White ◽  
Raghavan Srinivasan ◽  
John A. Dunbar ◽  
...  

Decision tables have been used for many years in data processing and business applications to simulate complex rule sets. Several computer languages have been developed based on rule systems and they are easily programmed in several current languages. Land management and river-reservoir models simulate complex land management operations and reservoir management in highly regulated river systems. Decision tables are a precise yet compact way to model the rule sets and corresponding actions found in these models. In this study, we discuss the suitability of decision tables to simulate management in the river basin scale Soil and Water Assessment Tool (SWAT+) model. Decision tables are developed to simulate automated irrigation and reservoir releases. A simple auto irrigation application of decision tables was developed using plant water stress as a condition for irrigating corn in Texas. Sensitivity of the water stress trigger and irrigation application amounts were shown on soil moisture and corn yields. In addition, the Grapevine Reservoir near Dallas, Texas was used to illustrate the use of decision tables to simulate reservoir releases. The releases were conditioned on reservoir volumes and flood season. The release rules as implemented by the decision table realistically simulated flood releases as evidenced by a daily NSE (Nash-Sutcliffe Efficiency) of 0.52 and a percent bias of -1.1%. Using decision tables to simulate management in land, river and reservoir models was shown to have several advantages over current approaches including: 1) mature technology with considerable literature and applications, 2) ability to accurately represent complex, real world decision making, 3) code that is efficient, modular and easy to maintain, and 4) tables that are easy to maintain, support, and modify.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


2021 ◽  
Author(s):  
Cui Jian ◽  
Yue Zhao ◽  
Wenchao Sun ◽  
Yan Chen ◽  
Bo Wu ◽  
...  

Abstract Excessive phosphorus is an important cause of eutrophication. For river basin management, source identification and control of nonpoint source (NPS) pollution are difficult. In this study, to explore influences of hydrological conditions on phosphorus, the Soil and Water Assessment Tool (SWAT) model is applied to the Luanhe River basin in North China. Moreover, influences of the spatial scale of the livestock and poultry amount data on estimations of phosphorus loads are also discussed. The results show that applying town-level livestock and poultry amount data allows the model to perform better when estimating phosphorus loads, indicating that using data at a finer administrative level is necessary. For the typical wet year, the estimated annual phosphorus load was 2.6 times that in the typical dry year. Meanwhile, the contribution of pollution in summer to the annual load is greater in the wet year than that in the dry year. The spatial distributions of subbasins with high unit loads of phosphorus differ under different hydrological conditions, meaning that critical areas for pollution control vary with the wetness of each year. All these findings indicate that for pollution control at basin scale, considering the seasonal and interannual variabilities in hydrological conditions is highly demanded.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 516
Author(s):  
Li Li ◽  
Yingjun Liu ◽  
Kang Wang ◽  
Dan Zhang

Accurate simulation of pollution load at basin scale is very important for controlling pollution. Although data-driven models are increasingly popular in water environment studies, they are not extensively utilized in the simulation of pollution load at basin scale. In this paper, we developed a data-driven model based on Long-Short Term Memory (LSTM)-Back Propagation (BP) spatiotemporal combination. The model comprises several time simulators based on LSTM and a spatial combiner based on BP. The time series of the daily pollution load in the Zhouhe River basin during the period from 2006 to 2017 were simulated using the developed model, the BP model, the LSTM model and the Soil and Water Assessment Tool (SWAT) model, independently. Results showed that the spatial correlation (i.e., Pearson’s correlation coefficient is larger than 0.5) supports using a single model to simulate the pollution load at all sub-basins, rather than using independent models for each sub-basin. Comparison of the LSTM-BP spatiotemporal combination model with the BP, LSTM and SWAT models showed that the performance of the LSTM model is better than that of the BP model and the LSTM model can obtain comparable performance with the SWAT model in most cases, whereas the performance of the LSTM-BP spatiotemporal combination model is much better than that of the LSTM and SWAT models. Although the variation of the simulated pollution load with the LSTM-BP model is high under different hydrological periods and precipitation intensities, the LSTM-BP model can track the temporal variation trend of pollution load accurately (i.e., the RMSE is 6.27, NSE is 0.86 and BIAS is 19.46 for the NH3 load and the RMSE is 20.27, NSE is 0.71 and BIAS 36.87 is for the TN load). The results of this study demonstrate the applicability of data-driven models, especially the LSTM-BP model, in the simulation of pollution load at basin scale.


2020 ◽  
Vol 63 (2) ◽  
pp. 513-522 ◽  
Author(s):  
Ritesh Karki ◽  
Puneet Srivastava ◽  
Tamie L. Veith

HighlightsThis review study identified five different ways of setting up a SWAT model for field-scale analysis.Model setup for each field-scale modeling method and examples of application are discussed.Benefits and limitations of each method are discussed.Abstract. Although the Soil and Water Assessment Tool (SWAT) has been widely used as a watershed/basin scale model, recently there has been considerable interest in applying it at the field scale, especially for evaluation of best management practices and for building stakeholder confidence. In this study, a thorough review of the literature on field-scale application of SWAT was conducted. It was determined that there is more than one way of setting up a field-scale SWAT model depending on the spatial scale of the research as well as the research question to be answered. This article provides a detailed review of the methods used for field-scale SWAT modeling along with a summary of applications. This article also discusses the limitations and advantages of each method along with future research needs. The overarching goal of this article is to provide a valuable and time-conserving resource for future researchers interested in field-scale SWAT modeling. Keywords: Arc-SWAT, Field level, Field-scale resolution, Field-scale SWAT, SWAT.


2020 ◽  
Vol 9 (10) ◽  
pp. 576
Author(s):  
Nikiforos Samarinas ◽  
Nikolaos Tziolas ◽  
George Zalidis

The agricultural sector and natural resources are heavily interdependent, comprising a coherent but complex system. The soil and water assessment tool (SWAT) is widely used in assessing these interdependencies for regional watershed management. However, long-term simulations of agricultural watersheds are considered as not realistic since they have often been performed assuming constant land use over time and are based on the coarse resolution of the existing global or national data. This work presents the first insights of the synergy among SWAT model and deep learning classification algorithms to provide annually updated and realistic model’s parameterization and simulations. The proposed hybrid modelling approach couples the physical process SWAT model with the versatility of Earth observation data-driven non-linear deep learning algorithms for land use classification (Overall Accuracy (OA) = 79.58% and Kappa = 0.79), giving a strong advantage to decision makers for efficient management planning. A validation case at an agricultural watershed located in Northern Greece is provided to demonstrate their synergistic use to estimate nitrate and sediment concentrations that load in Zazari Lake. The SWAT model has been implemented under two different simulations; one with the use of a static coarse land use map and the other with the use of the annual updated land use maps for three consecutive years (2017–2019). The results indicate that the land use changes affect the final estimations resulting to an enhanced prediction performance of 1% and 2% for sediment and nitrate, respectively, when the annual land use maps are incorporated into SWAT simulations. In this context, a hybrid approach could further contribute to addressing challenges and support a data-centric scheme for informed decision making with regard to environmental and agricultural issues on the river basin scale.


2021 ◽  
Vol 14 ◽  
pp. 117862212098870
Author(s):  
Juan Adriel Carlos Mendoza ◽  
Tamar Anaharat Chavez Alcazar ◽  
Sebastián Adolfo Zuñiga Medina

Basin-scale simulation is fundamental to understand the hydrological cycle, and in identifying information essential for water management. Accordingly, the Soil and Water Assessment Tool (SWAT) model is applied to simulate runoff in the semi-arid Tambo River Basin in southern Peru, where economic activities are driven by the availability of water. The SWAT model was calibrated using the Sequential Uncertainty Fitting Ver-2 (SUFI-2) algorithm and two objective functions namely the Nash-Sutcliffe simulation efficiency (NSE), and coefficient of determination ( R2) for the period 1994 to 2001 which includes an initial warm-up period of 3 years; it was then validated for 2002 to 2016 using daily river discharge values. The best results were obtained using the objective function R2; a comparison of results of the daily and monthly performance evaluation between the calibration period and validation period showed close correspondence in the values for NSE and R2, and those for percent bias (PBIAS) and ratio of standard deviation of the observation to the root mean square error (RSR). The results thus show that the SWAT model can effectively predict runoff within the Tambo River basin. The model can also serve as a guideline for hydrology modellers, acting as a reliable tool.


2014 ◽  
Vol 49 (4) ◽  
pp. 372-385
Author(s):  
Shawn Burdett ◽  
Michael Hulley ◽  
Andy Smith

A hydrologic and water quality model is sought to establish an approach to land management decisions for a Canadian Army training base. Training areas are subjected to high levels of persistent activity creating unique land cover and land-use disturbances. Deforestation, complex road networks, off-road manoeuvres, and vehicle stream crossings are among major anthropogenic activities observed to affect these landscapes. Expanding, preserving and improving the quality of these areas to host training activities for future generations is critical to maintain operational effectiveness. Inclusive to this objective is minimizing resultant environmental degradation, principally in the form of hydrologic fluctuations, excess erosion, and sedimentation of aquatic environments. Application of the Soil Water Assessment Tool (SWAT) was assessed for its ability to simulate hydrologic and water quality conditions observed in military landscapes at 5th Canadian Division Support Base (5 CDSB) Gagetown, New Brunswick. Despite some limitations, this model adequately simulated three partial years of daily watershed outflow (NSE = 0.47–0.79, R2 = 0.50–0.88) and adequately predicted suspended sediment yields during the observation periods (%d = 6–47%) for one highly disturbed sub-watershed in Gagetown. Further development of this model may help guide decisions to develop or decommission training areas, guide land management practices and prioritize select landscape mitigation efforts.


2019 ◽  
Vol 11 (4) ◽  
pp. 992-1000
Author(s):  
Jirawat Supakosol ◽  
Kowit Boonrawd

Abstract The purpose of this study is to investigate the future runoff into the Nong Han Lake under the effects of climate change. The hydrological model Soil and Water Assessment Tool (SWAT) has been selected for this study. The calibration and validation were performed by comparing the simulated and observed runoff from gauging station KH90 for the period 2001–2003 and 2004–2005, respectively. Future climate projections were generated by Providing Regional Climates for Impacts Studies (PRECIS) under the A2 and B2 scenarios. The SWAT model yielded good results in comparison to the baseline; moreover, the results of the PRECIS model showed that both precipitations and temperatures increased. Consequently, the amount of runoff calculated by SWAT under the A2 and B2 scenarios was higher than that for the baseline. In addition, the amount of runoff calculated considering the A2 scenario was higher than that considering the B2 scenario, due to higher average annual precipitations in the former case. The methodology and results of this study constitute key information for stakeholders, especially for the development of effective water management systems in the lake, such as designing a rule curve to cope with any future incidents.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 860
Author(s):  
Nicu Constantin Tudose ◽  
Mirabela Marin ◽  
Sorin Cheval ◽  
Cezar Ungurean ◽  
Serban Octavian Davidescu ◽  
...  

This study aims to build and test the adaptability and reliability of the Soil and Water Assessment Tool hydrological model in a small mountain forested watershed. This ungauged watershed covers 184 km2 and supplies 90% of blue water for the Brașov metropolitan area, the second largest metropolitan area of Romania. After building a custom database at the forest management compartment level, the SWAT model was run. Further, using the SWAT-CUP software under the SUFI2 algorithm, we identified the most sensitive parameters required in the calibration and validation stage. Moreover, the sensitivity analysis revealed that the surface runoff is mainly influenced by soil, groundwater and vegetation condition parameters. The calibration was carried out for 2001‒2010, while the 1996‒1999 period was used for model validation. Both procedures have indicated satisfactory performance and a lower uncertainty of model results in replicating river discharge compared with observed discharge. This research demonstrates that the SWAT model can be applied in small ungauged watersheds after an appropriate parameterisation of its databases. Furthermore, this tool is appropriate to support decision-makers in conceiving sustainable watershed management. It also guides prioritising the most suitable measures to increase the river basin resilience and ensure the water demand under climate change.


2013 ◽  
Vol 726-731 ◽  
pp. 3792-3798
Author(s):  
Wen Ju Zhao ◽  
Wei Sun ◽  
Zong Li Li ◽  
Yan Wei Fan ◽  
Jian Shu Song ◽  
...  

SWAT (Soil and Water Assessment Tool) model is one of distributed hydrological model, based on spatial data offered by GIS and RS. This article mainly introduces the SWAT model principle, structure, and it is the application of stream flow simulation in China and other countries, then points out the deficiency existing in the process of model research. In order to service in water resources management work better, experts and scholars further research the rate constant and uncertainty of the simplification of the model parameters, and the combination of RS and GIS to use, and hydrological scale problems.


Sign in / Sign up

Export Citation Format

Share Document