scholarly journals Transcriptional Activation of Human GD3 Synthase (hST8Sia I) Gene In curcumin-Induced Autophagy in A549 Human Lung Carcinoma Cells

Author(s):  
Miri Lee ◽  
Kyoung-Sook Kim ◽  
Dong-Hyun Kim ◽  
Cheorl-Ho Kim ◽  
Young-Choon Lee

Curcumin, a natural polyphenolic compound isolated from the plant Curcuma longa, is known to induce autophagy in various cancer cells, including lung cancer. In the present study, we also confirmed by LC3 immunofluorescence and immunoblotting analyses that curcumin triggers autophagy in human lung adenocarcinoma A549 cell line. In parallel with autophagy induction, gene expression of human GD3 synthase (hST8Sia I) responsible for ganglioside GD3 synthesis was markedly elevated in response to curcumin in A549 cells. To investigate transcriptional activation of hST8Sia I associated with autophagy formation in curcumin-treated A549 cells, functional characterization of the 5’-flanking region of the hST8Sia I gene was carried out using luciferase reporter assay system. Deletion analysis demonstrated that the -1146 to -646 region, which includes putative c-Ets-1, CREB, AP-1 and NF-κB binding sites, functions as the curcumin-responsive promoter of hST8Sia I in A549 cells. Site-directed mutagenesis and chromatin immunoprecipitation assay demonstrated that the NF-κB binding site at -731 to -722 was indispensable for the curcumin-induced hST8Sia I gene expression in A549 cells. Moreover, the transcriptional activation of hST8Sia I by curcumin A549 cells was strongly inhibited by compound C, an inhibitor of AMP-activated protein kinase (AMPK). These results suggest that curcumin controls hST8Sia I gene expression via AMPK signal pathway in A549 cells.

1996 ◽  
Vol 271 (6) ◽  
pp. L963-L971 ◽  
Author(s):  
M. A. Fiedler ◽  
K. Wernke-Dollries ◽  
J. M. Stark

Previous studies demonstrated that respiratory syncytial virus (RSV) infection of A549 cells induced interleukin (IL)-8 gene expression and protein release from the cells as early as 2 h after treatment [M. A. Fiedler, K. Wernke-Dollries, and J. M. Stark. Am. J. Physiol. 269 (Lung Cell. Mol. Physiol. 13): L865-L872, 1995; J. G. Mastronarde, M. M. Monick, and G. W. Hunninghake. Am. J. Respir. Cell Mol. Biol. 13: 237-244, 1995]. Furthermore, the effects of RSV at the 2-h time point were not dependent on viral replication. The studies reported here were designed to test the hypothesis that active and inactive RSV induce IL-8 gene expression in A549 cells at the 2-h time point by a mechanism dependent on the activation of the nuclear transcription factor NF-kappa B Northern blot analysis indicated that IL-8 gene expression occurred independent of protein synthesis 2 h after A549 cells were treated with RSV. Analysis of nuclear extracts from RSV-treated A549 cells by electrophoretic mobility shift assays demonstrated that NF-kappa B was activated as early as 15 min after RSV was added to the cells and remained activated for at least 90 min. In contrast, baseline levels of NF-IL-6 and activator protein-1 (AP-1) did not change over this period of time. Deoxyribonuclease footprint analysis of a portion of the 5'-flanking region of the IL-8 gene demonstrated two potential regions for transcription factor binding, which corresponded to the potential AP-1 binding site, and potential NF-IL-6 and NF-kappa B binding sites. Mutational analysis of the 200-bp 5'-untranslated region of the IL-8 gene demonstrated that activation of NF-kappa B and NF-IL-6 were required for RSV-induced transcriptional activation of the IL-8 gene.


2003 ◽  
Vol 23 (22) ◽  
pp. 8272-8281 ◽  
Author(s):  
Hanna Uvell ◽  
Ylva Engström

ABSTRACT Innate immune reactions are crucial processes of metazoans to protect the organism against overgrowth of faster replicating microorganisms. Drosophila melanogaster is a precious model for genetic and molecular studies of the innate immune system. In response to infection, the concerted action of a battery of antimicrobial peptides ensures efficient killing of the microbes. The induced gene expression relies on translocation of the Drosophila Rel transcription factors Relish, Dif, and Dorsal to the nucleus where they bind to κB-like motifs in the promoters of the inducible genes. We have identified another putative promoter element, called region 1 (R1), in a number of antimicrobial peptide genes. Site-directed mutagenesis of the R1 site diminished Cecropin A1 (CecA1) expression in transgenic Drosophila larvae and flies. Infection of flies induced a nuclear R1-binding activity that was unrelated to the κB-binding activity in the same extracts. Although the R1 motif was required for Rel protein-mediated CecA1 expression in cotransfection experiments, our data argue against it being a direct target for the Drosophila Rel proteins. We propose that the R1 and κB motifs are targets for distinct regulatory complexes that act in concert to promote high levels of antimicrobial peptide gene expression in response to infection.


2007 ◽  
Vol 6 (1) ◽  
pp. 75 ◽  
Author(s):  
Dong-Cheol Seo ◽  
Ji-Min Sung ◽  
Hee-Jung Cho ◽  
Hee Yi ◽  
Kun-Ho Seo ◽  
...  

Author(s):  
Asa Mcgray ◽  
Timothy Gingerich ◽  
James Petrik ◽  
Jonathan Lamarre

AbstractThrombospondin-1 (TSP-1) is a matricellular protein that participates in numerous normal and pathological tissue processes and is rapidly modulated by different stimuli. The presence of 8 highly-conserved AU rich elements (AREs) within the 3′-untranslated region (3′UTR) of the TSP-1 mRNA suggests that post-transcriptional regulation is likely to represent one mechanism by which TSP-1 gene expression is regulated. We investigated the roles of these AREs, and proteins which bind to them, in the control of TSP-1 mRNA stability. The endogenous TSP-1 mRNA half-life is approximately 2.0 hours in HEK293 cells. Luciferase reporter mRNAs containing the TSP-1 3′UTR show a similar rate of decay, suggesting that the 3′UTR influences the decay rate. Site-directed mutagenesis of individual and adjacent AREs prolonged reporter mRNA halflife to between 2.2 and 4.4 hours. Mutation of all AREs increased mRNA half life to 8.8 hours, suggesting that all AREs have some effect, but that specific AREs may have key roles in stability regulation. A labeled RNA oligonucleotide derived from the most influential ARE was utilized to purify TSP-1 AREbinding proteins. The AU-binding protein AUF1 was shown to associate with this motif. These studies reveal that AREs in the 3′UTR control TSP-1 mRNA stability and that the RNA binding protein AUF1 participates in this control. These studies suggest that ARE-dependent control of TSP-1 mRNA stability may represent an important component in the control of TSP-1 gene expression.


2002 ◽  
Vol 364 (2) ◽  
pp. 537-545 ◽  
Author(s):  
Deborah L. BAINES ◽  
Mandy JANES ◽  
David J. NEWMAN ◽  
Oliver G. BEST

Expression of the α-subunit of the amiloride-sensitive sodium channel (αENaC) is regulated by a number of factors in the lung, including oxygen partial pressure (Po2). As transcriptional activation is a mechanism for raising cellular mRNA levels, we investigated the effect of physiological changes in Po2 on the activity of the redox-sensitive transcription factor nuclear factor κB (NF-κB) and transcriptional activity of 5′-flanking regions of the human αENaC gene using luciferase reporter-gene vectors transiently transfected into human adult alveolar carcinoma A549 cells. By Western blotting we confirmed the presence of NF-κB p65 but not p50 in these cells. Transiently increasing Po2 from 23 to 42mmHg for 24h evoked a significant increase in NF-κB DNA-binding activity and transactivation of a NF-κB-driven luciferase construct (pGLNF-κBpro), which was blocked by the NF-κB activation inhibitor sulphasalazine (5mM). Transcriptional activity of αENaC-luciferase constructs containing 5′-flanking sequences (including the NF-κB consensus) were increased by raising Po2 from 23 to 142mm Hg if they contained transcriptional initiation sites (TIS) for exons 1A and 1B (pGL3E2.2) or the 3′ TIS of exon 1B alone (pGL3E0.8). Sulphasalazine had no significant effect on the activity of these constructs, suggesting that the Po2-evoked rise in activity was not a direct consequence of NF-κB activation. Conversely, the relative luciferase activity of a construct that lacked the 3′ TIS, a 3′ intron and splice site but still retained the 5′ TIS and NF-κB consensus sequence was suppressed significantly by raising Po2. This effect was reversed by sulphasalazine, suggesting that activation of NF-κB mediated Po2-evoked suppression of transcription from the exon 1A TIS of αENaC.


2010 ◽  
Vol 42 (12) ◽  
pp. 849 ◽  
Author(s):  
Haw-Young Kwon ◽  
Seok-Jo Kim ◽  
Cheorl-Ho Kim ◽  
Sung-Wook Son ◽  
Kyoung-Sook Kim ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3865-3865
Author(s):  
Jorn Havinga ◽  
Laurensia Yuniati ◽  
Marc Demkes ◽  
Dorette van Ingen Schenau ◽  
Roland P. Kuiper ◽  
...  

Abstract Background Glucocorticoids (GCs) such as prednisolone and dexamethasone are critical components of multi-agent chemotherapy regimens used in the treatment of acute lymphoblastic leukemia (ALL). Children with ALL are stratified into risk groups based on diagnostic features (i.e. age and cytogenetics) and therapy response. It has been established that the initial response to prednisolone is a major prognostic factor. Moreover, at relapse, de novo or acquired resistance to GCs is common and represents an important determinant in treatment failure. Recent studies performed by us and others have identified IKZF1 gene deletions and mutations as an independent prognostic factor that predicts prognosis and treatment outcome of children with B cell precursor ALL (BCP-ALL). These monoallelic IKZF1 gene deletions either affect the whole gene or may result in expression of dominant-negative IKZF1 isoforms due to intragenic deletions. However, it has not been established whether loss of IKZF1 function directly impacts the response to glucocorticoids. Results We examined whether haplodeficiency for Ikzf1 gene expression in mouse lymphocytes affects glucocorticoid-induced apoptosis. Splenocytes from Ikzf1+/- knockout mice were activated with lipopolysaccharide (LPS) and treated with increasing concentrations of either prednisolone or dexamethasone for 48 hours. B-lymphocytes haplodeficient for IKZF1 showed a significantly enhanced survival after treatment with GCs compared to wild type cells, as measured in an MTS assay and by AnnexinV staining. In case of prednisolone, the inhibitory concentration (IC50) was about ∼200-fold higher in the Ikzf1+/- splenocytes as compared to the wild-type cells. Gene expression analysis revealed that Ikzf1+/- splenocytes displayed lower overall expression levels as well as diminished transcriptional activation of several glucocorticoid receptor (GR)-induced target genes (i.e. Sgk1, Irs2, Zfp36L2). Furthermore, in luciferase reporter assays we established that IKZF1 overexpression enhances GR-mediated transcriptional activation in response to prednisolone. Finally, lentivirus-mediated IKZF1-shRNA expression in Nalm6 cell line, which reduces endogenous IKZF1 protein levels to around 50%, inhibits prednisolone and dexamethasone-induced apoptosis, demonstrating that also in human leukemia cells reduced IKZF1 expression levels protect against GC-induced cell death. In conclusion, our data provide evidence that loss of IKZF1 function mediates resistance to glucocorticoid-induced apoptosis, which may contribute to the poor outcome of IKZF1-deleted BCP-ALL. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
David Grubich Atac ◽  
Samuel Koller ◽  
James V M Hanson ◽  
Silke Feil ◽  
Amit Tiwari ◽  
...  

Abstract Optic nerve hypoplasia (ONH) is a congenital optic nerve abnormality caused by underdevelopment of retinal ganglion cells (RGCs). Despite being a rare disease, ONH is the most common optic disc anomaly in ophthalmological practice. So far, mutations in several genes have been identified as causative, however many cases of ONH remain without a molecular explanation. The early transcription factor atonal basic-helix-loop-helix (bHLH) transcription factor 7 (ATOH7) is expressed in retinal progenitor cells and has a crucial role in RGC development. Previous studies have identified several mutations in the ATOH7 locus in cases of eye developmental diseases such as nonsyndromic congenital retinal nonattachment and persistent hyperplasia of the primary vitreous. Here we present two siblings with a phenotype predominated by bilateral ONH, with additional features of foveal hypoplasia and distinct vascular abnormalities, where whole-exome sequencing identified two compound heterozygous missense mutations affecting a conserved amino acid residue within the bHLH domain of ATOH7 (NM_145178.3:c.175G>A; p.(Ala59Thr) and c.176C>T; p.(Ala59Val)). ATOH7 expression constructs with patient single nucleotide variants were cloned for functional characterization. Protein analyses revealed decreased protein amounts and significantly enhanced degradation in the presence of E47, a putative bHLH dimerization partner. Protein interaction assays revealed decreased heterodimerization and DNA-binding of ATOH7 variants, resulting in total loss of transcriptional activation of luciferase reporter gene expression. These findings strongly support pathogenicity of the two ATOH7 mutations, one of which is novel. Additionally, this report highlights the possible impact of altered ATOH7 dimerization on protein stability and function.


2007 ◽  
Vol 282 (38) ◽  
pp. 27702-27712 ◽  
Author(s):  
Takeshi Sato ◽  
Kiyoshi Furukawa

Malignant transformation is associated with increased gene expression of β-1,4-galactosyltransferase (β-1,4-GalT) V, which contributes to the biosynthesis of highly branched N-linked oligosaccharides characteristic of cancer cells. Our previous study showed that expression of the human β-1,4-GalT V gene is regulated by Sp1 (Sato, T., and Furukawa, K. (2004) J. Biol. Chem. 279, 39574–39583), and a subsequent study showed that the gene expression is also activated by Ets-1, a product of the oncogene (Sato, T., and Furukawa, K. (2005) Glycoconj. J. 22, 365). Herein we report the mechanism of β-1,4-GalT V gene activation by these transcription factors. The gene expression and promoter activity of β-1,4-GalT V increased when the ets-1 cDNA was transfected into A549 cells, which contain a small amount of Ets-1, but decreased dramatically when the dominant-negative ets-1 cDNA was transfected into HepG2 cells, which contain a large amount of Ets-1. Luciferase assays using deletion constructs of the β-1,4-GalT V gene promoter showed that promoter region –116 to +22 is critical for the transcriptional activation of the gene by Ets-1. Despite the presence of one Ets-1-binding site, which overlapped the Sp1-binding site, electrophoretic mobility shift assays showed that the region bound preferentially to Sp1 rather than to Ets-1. To solve this problem, we examined the transcriptional regulation of the human Sp1 gene by Ets-1 and found that the gene expression and promoter activity of Sp1 are regulated by Ets-1 in cancer cells. Functional analyses of two Ets-1-binding sites in the Sp1 gene promoter showed that only Ets-1-binding site –413 to –404 is involved in the activation of the gene by Ets-1. These results indicate that Ets-1 enhances expression of the β-1,4-GalT V gene through activation of the Sp1 gene in cancer cells.


Sign in / Sign up

Export Citation Format

Share Document