Microparticle Inertial Focusing in an Asymmetric Curved Microchannel

Author(s):  
Arzu Özbey ◽  
Mehrdad Karimzadehkhouei ◽  
Hossein Alijani ◽  
Ali Koşar

Inertial microfluidics offers high throughput, label-free, easy to design, and cost-effective solutions and is a promising technique based on hydrodynamic forces (passive techniques) instead of external ones, which can be employed in lab-on-a-chip and micro-total-analysis-systems for focusing, manipulation, and separation of microparticles in chemical and biomedical applications. The current work, studies the focusing behavior of microparticles in an asymmetric curvilinear microchannel. For this purpose, focusing behavior, including position and band width, of microparticles of diameters of 10, 15 and 20 µm, which served as representatives of different cells, in an asymmetric curvilinear microchannel with curvature angle of 280° was experimentally studied at flow rates from 400 to 2700 µL/min (corresponding to Reynolds numbers between 30 and 205). The results revealed that the largest distance between focusing bands of 20 µm and 10 µm microparticles as well as between focusing bands of 15 µm and 10 µm was obtained at Reynolds number of 121. For the case of microparticles of diameters 20 µm and 15 µm, the largest distance was seen at Reynolds number of 144. The focusing band width became smaller in the asymmetric microchannel so that focusing could be more clearly observed in this configuration.

Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 57 ◽  
Author(s):  
Arzu Özbey ◽  
Mehrdad Karimzadehkhouei ◽  
Hossein Alijani ◽  
Ali Koşar

Inertial Microfluidics offer a high throughput, label-free, easy to design, and cost-effective solutions, and are a promising technique based on hydrodynamic forces (passive techniques) instead of external ones, which can be employed in the lab-on-a-chip and micro-total-analysis-systems for the focusing, manipulation, and separation of microparticles in chemical and biomedical applications. The current study focuses on the focusing behavior of the microparticles in an asymmetric curvilinear microchannel with curvature angle of 280°. For this purpose, the focusing behavior of the microparticles with three different diameters, representing cells with different sizes in the microchannel, was experimentally studied at flow rates from 400 to 2700 µL/min. In this regard, the width and position of the focusing band are carefully recorded for all of the particles in all of the flow rates. Moreover, the distance between the binary combinations of the microparticles is reported for each flow rate, along with the Reynolds number corresponding to the largest distances. Furthermore, the results of this study are compared with those of the microchannel with the same curvature angle but having a symmetric geometry. The microchannel proposed in this study can be used or further modified for cell separation applications.


2018 ◽  
Vol 115 (30) ◽  
pp. 7682-7687 ◽  
Author(s):  
Baris R. Mutlu ◽  
Jon F. Edd ◽  
Mehmet Toner

Inertial microfluidics (i.e., migration and focusing of particles in finite Reynolds number microchannel flows) is a passive, precise, and high-throughput method for microparticle manipulation and sorting. Therefore, it has been utilized in numerous biomedical applications including phenotypic cell screening, blood fractionation, and rare-cell isolation. Nonetheless, the applications of this technology have been limited to larger bioparticles such as blood cells, circulating tumor cells, and stem cells, because smaller particles require drastically longer channels for inertial focusing, which increases the pressure requirement and the footprint of the device to the extent that the system becomes unfeasible. Inertial manipulation of smaller bioparticles such as fungi, bacteria, viruses, and other pathogens or blood components such as platelets and exosomes is of significant interest. Here, we show that using oscillatory microfluidics, inertial focusing in practically “infinite channels” can be achieved, allowing for focusing of micron-scale (i.e. hundreds of nanometers) particles. This method enables manipulation of particles at extremely low particle Reynolds number (Rep < 0.005) flows that are otherwise unattainable by steady-flow inertial microfluidics (which has been limited to Rep > ∼10−1). Using this technique, we demonstrated that synthetic particles as small as 500 nm and a submicron bacterium, Staphylococcus aureus, can be inertially focused. Furthermore, we characterized the physics of inertial microfluidics in this newly enabled particle size and Rep range using a Peclet-like dimensionless number (α). We experimentally observed that α >> 1 is required to overcome diffusion and be able to inertially manipulate particles.


RSC Advances ◽  
2015 ◽  
Vol 5 (66) ◽  
pp. 53857-53864 ◽  
Author(s):  
Amy E. Reece ◽  
Kaja Kaastrup ◽  
Hadley D. Sikes ◽  
John Oakey

A staged microfluidic inertial focusing device capable of high-yield, high-throughput complex fluid enrichment has been developed for integrated microfluidic cellular assays and biological micro total analysis systems.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


2020 ◽  
Vol 26 (40) ◽  
pp. 5188-5204
Author(s):  
Uzair Nagra ◽  
Maryam Shabbir ◽  
Muhammad Zaman ◽  
Asif Mahmood ◽  
Kashif Barkat

Nanosized particles, with a size of less than 100 nm, have a wide variety of applications in various fields of nanotechnology and biotechnology, especially in the pharmaceutical industry. Metal nanoparticles [MNPs] have been synthesized by different chemical and physical procedures. Still, the biological approach or green synthesis [phytosynthesis] is considered as a preferred method due to eco-friendliness, nontoxicity, and cost-effective production. Various plants and plant extracts have been used for the green synthesis of MNPs, including biofabrication of noble metals, metal oxides, and bimetallic combinations. Biomolecules and metabolites present in plant extracts cause the reduction of metal ions into nanosized particles by one-step preparation methods. MNPs have remarkable attractiveness in biomedical applications for their use as potential antioxidant, anticancer and antibacterial agents. The present review offers a comprehensive aspect of MNPs production via top-to-bottom and bottom-to-top approach with considerable emphasis on green technology and their possible biomedical applications. The critical parameters governing the MNPs formation by plant-based synthesis are also highlighted in this review.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 412
Author(s):  
Kaan Erdem ◽  
Vahid Ebrahimpour Ahmadi ◽  
Ali Kosar ◽  
Lütfullah Kuddusi

Label-free, size-dependent cell-sorting applications based on inertial focusing phenomena have attracted much interest during the last decade. The separation capability heavily depends on the precision of microparticle focusing. In this study, five-loop spiral microchannels with a height of 90 µm and a width of 500 µm are introduced. Unlike their original spiral counterparts, these channels have elliptic configurations of varying initial aspect ratios, namely major axis to minor axis ratios of 3:2, 11:9, 9:11, and 2:3. Accordingly, the curvature of these configurations increases in a curvilinear manner through the channel. The effects of the alternating curvature and channel Reynolds number on the focusing of fluorescent microparticles with sizes of 10 and 20 µm in the prepared suspensions were investigated. At volumetric flow rates between 0.5 and 3.5 mL/min (allowing separation), each channel was tested to collect samples at the designated outlets. Then, these samples were analyzed by counting the particles. These curved channels were capable of separating 20 and 10 µm particles with total yields up to approximately 95% and 90%, respectively. The results exhibited that the level of enrichment and the focusing behavior of the proposed configurations are promising compared to the existing microfluidic channel configurations.


Author(s):  
Karsten Tawackolian ◽  
Martin Kriegel

AbstractThis study looks to find a suitable turbulence model for calculating pressure losses of ventilation components. In building ventilation, the most relevant Reynolds number range is between 3×104 and 6×105, depending on the duct dimensions and airflow rates. Pressure loss coefficients can increase considerably for some components at Reynolds numbers below 2×105. An initial survey of popular turbulence models was conducted for a selected test case of a bend with such a strong Reynolds number dependence. Most of the turbulence models failed in reproducing this dependence and predicted curve progressions that were too flat and only applicable for higher Reynolds numbers. Viscous effects near walls played an important role in the present simulations. In turbulence modelling, near-wall damping functions are used to account for this influence. A model that implements near-wall modelling is the lag elliptic blending k-ε model. This model gave reasonable predictions for pressure loss coefficients at lower Reynolds numbers. Another example is the low Reynolds number k-ε turbulence model of Wilcox (LRN). The modification uses damping functions and was initially developed for simulating profiles such as aircraft wings. It has not been widely used for internal flows such as air duct flows. Based on selected reference cases, the three closure coefficients of the LRN model were adapted in this work to simulate ventilation components. Improved predictions were obtained with new coefficients (LRNM model). This underlined that low Reynolds number effects are relevant in ventilation ductworks and give first insights for suitable turbulence models for this application. Both the lag elliptic blending model and the modified LRNM model predicted the pressure losses relatively well for the test case where the other tested models failed.


2021 ◽  
Vol 62 (3) ◽  
Author(s):  
Nils Paul van Hinsberg

Abstract The aerodynamics of smooth and slightly rough prisms with square cross-sections and sharp edges is investigated through wind tunnel experiments. Mean and fluctuating forces, the mean pitch moment, Strouhal numbers, the mean surface pressures and the mean wake profiles in the mid-span cross-section of the prism are recorded simultaneously for Reynolds numbers between 1$$\times$$ × 10$$^{5}$$ 5 $$\le$$ ≤ Re$$_{D}$$ D $$\le$$ ≤ 1$$\times$$ × 10$$^{7}$$ 7 . For the smooth prism with $$k_s$$ k s /D = 4$$\times$$ × 10$$^{-5}$$ - 5 , tests were performed at three angles of incidence, i.e. $$\alpha$$ α = 0$$^{\circ }$$ ∘ , −22.5$$^{\circ }$$ ∘ and −45$$^{\circ }$$ ∘ , whereas only both “symmetric” angles were studied for its slightly rough counterpart with $$k_s$$ k s /D = 1$$\times$$ × 10$$^{-3}$$ - 3 . First-time experimental proof is given that, within the accuracy of the data, no significant variation with Reynolds number occurs for all mean and fluctuating aerodynamic coefficients of smooth square prisms up to Reynolds numbers as high as $$\mathcal {O}$$ O (10$$^{7}$$ 7 ). This Reynolds-number independent behaviour applies to the Strouhal number and the wake profile as well. In contrast to what is known from square prisms with rounded edges and circular cylinders, an increase in surface roughness height by a factor 25 on the current sharp-edged square prism does not lead to any notable effects on the surface boundary layer and thus on the prism’s aerodynamics. For both prisms, distinct changes in the aerostatics between the various angles of incidence are seen to take place though. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document