scholarly journals Design & Manufacture of a High Performance Bicycle Crank by Additive Manufacturing

Author(s):  
Iain McEwen ◽  
David E Cooper ◽  
Jay Warnett ◽  
Nadia Kourra ◽  
Mark Williams ◽  
...  

Additive Manufacturing (AM) provides an opportunity to fundamentally redesign components previously limited by conventional manufacturing techniques. A new process for this workflow of design, manufacture by Powder Bed Fusion (PBF) and validation is presented, to which a case study of a crank for a high performance racing bicycle is applied. Topology optimisation generated conceptually ideal geometry from which a functional design was interpreted. Design for AM considerations were employed to reduce build time, material usage and post-processing labour. PBF was employed to manufacture the parts, and the build quality assessed using Computed Tomography (CT). Static and dynamic functional testing was performed and compared to a Finite Element Analysis (FEA). CT confirmed good build quality of tall, complex geometry with no significant geometrical deviation from CAD over 0.5 mm. Static testing proved performance close to current market leaders, although failure under fatigue occurred after just 2495 ± 125 cycles, the failure mechanism was consistent in both its form and location. These physical results were representative of those simulated, thus validating the FEA. This research demonstrates a complete workflow from design, manufacture, post-treatment and validation of a highly loaded PBF manufactured component, offering practitioners with a validated approach to the application of PBF. 

2018 ◽  
Vol 8 (8) ◽  
pp. 1360 ◽  
Author(s):  
Iain McEwen ◽  
David Cooper ◽  
Jay Warnett ◽  
Nadia Kourra ◽  
Mark Williams ◽  
...  

A new practical workflow for the laser Powder Bed Fusion (PBF) process, incorporating topological design, mechanical simulation, manufacture, and validation by computed tomography is presented, uniquely applied to a consumer product (crank for a high-performance racing bicycle), an approach that is tangible and adoptable by industry. The lightweight crank design was realised using topology optimisation software, developing an optimal design iteratively from a simple primitive within a design space and with the addition of load boundary conditions (obtained from prior biomechanical crank force–angle models) and constraints. Parametric design modification was necessary to meet the Design for Additive Manufacturing (DfAM) considerations for PBF to reduce build time, material usage, and post-processing labour. Static testing proved performance close to current market leaders with the PBF manufactured crank found to be stiffer than the benchmark design (static load deflection of 7.0 ± 0.5 mm c.f. 7.67 mm for a Shimano crank at a competitive mass (155 g vs. 175 g). Dynamic mechanical performance proved inadequate, with failure at 2495 ± 125 cycles; the failure mechanism was consistent in both its form and location. This research is valuable and novel as it demonstrates a complete workflow from design, manufacture, post-treatment, and validation of a highly loaded PBF manufactured consumer component, offering practitioners a validated approach to the application of PBF for components with application outside of the accepted sectors (aerospace, biomedical, autosports, space, and power generation).


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rohan Prabhu ◽  
Jordan Scott Masia ◽  
Joseph T. Berthel ◽  
Nicholas Alexander Meisel ◽  
Timothy W. Simpson

Purpose The COVID-19 pandemic has resulted in numerous innovative engineering design solutions, several of which leverage the rapid prototyping and manufacturing capabilities of additive manufacturing. This paper aims to study a subset of these solutions for their utilization of design for AM (DfAM) techniques and investigate the effects of DfAM utilization on the creativity and manufacturing efficiency of these solutions. Design/methodology/approach This study compiled 26 COVID-19-related solutions designed for AM spanning three categories: (1) face shields (N = 6), (2) face masks (N = 12) and (3) hands-free door openers (N = 8). These solutions were assessed for (1) DfAM utilization, (2) manufacturing efficiency and (3) creativity. The relationships between these assessments were then computed using generalized linear models to investigate the influence of DfAM utilization on manufacturing efficiency and creativity. Findings It is observed that (1) unique and original designs scored lower in their AM suitability, (2) solutions with higher complexity scored higher on usefulness and overall creativity and (3) solutions with higher complexity had higher build cost, build time and material usage. These findings highlight the need to account for both opportunistic and restrictive DfAM when evaluating solutions designed for AM. Balancing the two DfAM perspectives can support the development of solutions that are creative and consume fewer build resources. Originality/value DfAM evaluation tools primarily focus on AM limitations to help designers avoid build failures. This paper proposes the need to assess designs for both, their opportunistic and restrictive DfAM utilization to appropriately assess the manufacturing efficiency of designs and to realize the creative potential of adopting AM.


Author(s):  
Raja A. ◽  
Mythreyi O. V. ◽  
Jayaganthan R.

Ni based super alloys are widely used in engine turbines because of their proven performance at high temperatures. Manufacturing these parts by additive manufacturing (AM) methods provides researchers a lot of creative space for complex design to improve efficiency. Powder bed fusion (PBF) and direct energy deposition (DED) are the two most widely-used metal AM methods. Both methods are influenced by the source, parameters, design, and raw material. Selective laser melting is one of the laser-based PBF techniques to create small layer thickness and complex geometry with greater accuracy and properties. The layer-by-layer metal addition generates epitaxial growth and solidification in the built direction. There are different second phases in the Ni-based superalloys. This chapter details the micro-segregation of these particles and its influence on the microstructure, and mechanical properties are dependent on the process influencing parameters, the thermal kinetics during the process, and the post-processing treatments.


2019 ◽  
Vol 25 (9) ◽  
pp. 1536-1544
Author(s):  
Xiangzhi Wei ◽  
Xianda Li ◽  
Shanshan Wen ◽  
Yu Zheng ◽  
Yaobin Tian

Purpose For any 3D model with chambers to be fabricated in powder-bed additive manufacturing processes such as SLM and SLS, powders are trapped in the chambers of the finished model. This paper aims to design a shortest network with the least number of outlets for efficiently leaking the trapped powders. Design/methodology/approach This paper proposes a nonlinear objective with linear constraints for solving the channel design problem and a particle swarm optimization algorithm to solve the nonlinear system. Findings Structural optimization for the channel network leads to fairly short channels in the interior of the 3D models and very few outlets on the model surface, which achieves the cleaning of the powders while causing almost the least changes to the model. Originality/value This paper reveals the NP-harness of computing the shortest channel network with the least number of outlets. The proposed approach helps the design of lightweight models using the powder-bed additive manufacturing techniques.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2156 ◽  
Author(s):  
Byeong Hoon Bae ◽  
Jeong Woo Lee ◽  
Jae Min Cha ◽  
Il-Won Kim ◽  
Hyun-Do Jung ◽  
...  

Powder bed fusion (PBF) additive manufacturing (AM) is currently used to produce high-efficiency, high-density, and high-performance products for a variety of applications. However, existing AM methods are applicable only to metal materials and not to high-melting-point ceramics. Here, we develop a composite material for PBF AM by adding Al2O3 to a glass material using laser melting. Al2O3 and a black pigment are added to a synthesized glass frit for improving the composite strength and increased laser-light absorption, respectively. Our sample analysis shows that the glass melts to form a composite when the mixture is laser-irradiated. To improve the sintering density, we heat-treat the sample at 750 °C to synthesize a high-density glass frit composite. As per our X-ray diffraction (XRD) analysis to confirm the reactivity of the glass frit and Al2O3, we find that no reactions occur between glass and crystalline Al2O3. Moreover, we obtain a high sample density of ≥95% of the theoretical density. We also evaluate the composite’s mechanical properties as a function of the Al2O3 content. Our approach facilitates the manufacturing of ceramic 3D structures using glass materials through PBF AM and affords the benefits of reduced process cost, improved performance, newer functionalities, and increased value addition.


2020 ◽  
Vol 26 (4) ◽  
pp. 727-735 ◽  
Author(s):  
Zhenglin Du ◽  
Hui-Chi Chen ◽  
Ming Jen Tan ◽  
Guijun Bi ◽  
Chee Kai Chua

Purpose In recent years, additive manufacturing techniques have attracted much research attention because of their ability to fabricate customised parts with complex geometry. The range of composites suitable for laser-based powder bed fusion technique is limited, and has not been investigated yet. This paper aims to study the fabrication of AlSi10Mg reinforced with nAl2O3 using the laser-based powder bed fusion technique. Design/methodology/approach An experimental approach was used to investigate the densification of AlSi10Mg–nAl2O3 composites using laser-based powder bed fusion technique. Optimisation of the porosity was performed, and microstructure evolution was evaluated. Findings In this study, laser volumetric energy density (approximately 109 J/mm3) was found to be required for the fabrication of AlSi10Mg–nAl2O3 composites with a relative volumetric density approximating 99%. The use of laser volumetric energy density resulted in larger grains. Columnar grain structure was observed via the use of electron backscatter diffraction mapping. Originality/value This paper examines the processing of new aluminium composite material suitable for the fabrication via the laser-based powder bed fusion technique.


2020 ◽  
Vol 7 ◽  
pp. 6
Author(s):  
Vladimir V. Popov ◽  
Alexander Fleisher

Hybrid additive manufacturing is a relatively modern trend in the integration of different additive manufacturing techniques in the traditional manufacturing production chain. Here the AM-technique is used for producing a part on another substrate part, that is manufactured by traditional manufacturing like casting or milling. Such beneficial combination of additive and traditional manufacturing helps to overcome well-known issues, like limited maximum build size, low production rate, insufficient accuracy, and surface roughness. The current paper is devoted to the classification of different approaches in the hybrid additive manufacturing of steel components. Additional discussion is related to the benefits of Powder Bed Fusion (PBF) and Direct Energy Deposition (DED) approaches for hybrid additive manufacturing of steel components.


Author(s):  
Bashir Khoda

Current additive manufacturing processes mostly accustomed with mono-material process plan algorithm to build object layer by layer. However, building a multi-material or heterogeneous object with an additive manufacturing system is fairly new but emerging concept. Unlike mono-material object, heterogeneous object contains multiple features or inhomogeneous architecture and can be decomposed into two dimensional heterogeneous layers with islands where each island represents associated feature’s properties. The material deposition path-plan in such multi-feature/multi-contour layers requires more resources and may affect the part integrity, quality, and build time. A novel framework is presented in this paper to determine the optimum build direction for heterogeneous object by differentiating the slice based on the resources requirement. Slices are bundled based on the heterogeneity and the effect of build directions are quantified considering the feature characteristics and manufacturing attributes. The proposed methodology is illustrated by examples with 50% or more homogeneous slices along the optimum build direction. The outcome would certainly benefit the process plan for multi-material additive manufacturing techniques.


Sign in / Sign up

Export Citation Format

Share Document