scholarly journals Synthesis of Cu,N-Doped TiO2 Nanotube and Study on Photoelectric Properties

Author(s):  
Yiming Liu ◽  
Yanhao Sun ◽  
Zhuobin Yu ◽  
Wanggang Zhang ◽  
Peide Han

Cu,N-TiO2 nanotube (Cu,N-TNT) is prepared through a novel magnetron sputtering and anodic oxidation method. Then the morphology, structure and physicochemical property of Cu,N-TNT was analyzed by XRD, SEM, TEM, EDX and UV-vis-DR. The results indicate that the evenly doped copper is beneficial to the transformation of the TNT from anatase to rutile and play a key role in the morphology of the Cu,N-TNT. The doped Cu and N in the TNT influence the growth orientation of the TiO2 crystals, which result in the lattice distortion and wider the interplanar spacing 60s-Cu,N-TNT has less band gap and stronger absorption intensity in visible region than other Cu,N-TNT samples, which make the combination rate of photogenerated electron and photogenerated hole decrease greatly, thus beneficial to its physicochemical property.

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2206
Author(s):  
Gaoqian Yuan ◽  
Gen Zhang ◽  
Kezhuo Li ◽  
Faliang Li ◽  
Yunbo Cao ◽  
...  

Loading a noble metal on Bi4Ti3O12 could enable the formation of the Schottky barrier at the interface between the former and the latter, which causes electrons to be trapped and inhibits the recombination of photoelectrons and photoholes. In this paper, AgPt/Bi4Ti3O12 composite photocatalysts were prepared using the photoreduction method, and the effects of the type and content of noble metal on the photocatalytic performance of the catalysts were investigated. The photocatalytic degradation of rhodamine B (RhB) showed that the loading of AgPt bimetallic nanoparticles significantly improved the catalytic performance of Bi4Ti3O12. When 0.10 wt% noble metal was loaded, the degradation rate for RhB of Ag0.7Pt0.3/Bi4Ti3O12 was 0.027 min−1, which was respectively about 2, 1.7 and 3.7 times as that of Ag/Bi4Ti3O12, Pt/Bi3Ti4O12 and Bi4Ti3O12. The reasons may be attributed as follows: (i) the utilization of visible light was enhanced due to the surface plasmon resonance effect of Ag and Pt in the visible region; (ii) Ag nanoparticles mainly acted as electron acceptors to restrain the recombination of photogenerated electron-hole pairs under visible light irradiation; and (iii) Pt nanoparticles acted as electron cocatalysts to further suppress the recombination of photogenerated electron-hole pairs. The photocatalytic performance of Ag0.7Pt0.3/Bi4Ti3O12 was superior to that of Ag/Bi4Ti3O12 and Pt/Bi3Ti4O12 owing to the synergistic effect between Ag and Pt nanoparticles.


2014 ◽  
Vol 11 (2) ◽  
pp. 554-559
Author(s):  
Baghdad Science Journal

In this study, Epoxy Resin plates was prepared by mixing epoxy(A) and hardner(B)with ratio(A:B) (3:1) with different thickness (0.3-0.96)cm. The effect of thickness on optical properties have been studied (absorption ,transmission ,reflectance) also the optical constant were found like (absorption coefficient, extenuation coefficient and refraction index) for all of the prepared plates. The results have shown that by increasing the thickness of plates., the absorption intensity increase in which at plates thickness (0.3-0.96)cm the absorption intensity were(1.54-1.43) respectively, and since absorption peak for epoxy occur in ultraviolet region and exactly at wavelength(368)nm and energy gap(Eg=3.05 eV) thus their good transmittance in the visible light region The plates have transmittance of about (60-83.4)% in visible region ,the refraction index for Elda epoxy is (n= 1.53 ) and its reflectance is (R=4 )% at wavelength (368 nm).


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ji-guo Huang ◽  
Xue-ting Guo ◽  
Bo Wang ◽  
Lin-yang Li ◽  
Mei-xia Zhao ◽  
...  

The undoped and Mo-doped TiO2nanoparticles were synthesized by sol-gel method. The as-prepared samples were characterized by X-ray diffraction (XRD), diffuse reflectance UV-visible absorption spectra (UV-vis DRS), X-ray photoelectron spectra (XPS), and transmission electron microscopy (TEM). The photocatalytic activity was evaluated by photocatalytic degradation of methylene blue under irradiation of a 500 W xenon lamp and natural solar light outdoor. Effects of calcination temperatures and Mo doping amounts on crystal phase, crystallite size, lattice distortion, and optical properties were investigated. The results showed that most of Mo6+took the place of Ti4+in the crystal lattice of TiO2, which inhibited the growth of crystallite size, suppressed the transformation from anatase to rutile, and led to lattice distortion of TiO2. Mo doping narrowed the band gap (from 3.05 eV of TiO2to 2.73 eV of TiMo0.02O) and efficiently increased the optical absorption in visible region. Mo doping was shown to be an efficient method for degradation of methylene blue under visible light, especially under solar light. When the calcination temperature was 550°C and the Mo doping amount was 2.0%, the Mo-doped TiO2sample exhibited the highest photocatalytic activity.


2018 ◽  
Vol 18 (12) ◽  
pp. 8333-8336 ◽  
Author(s):  
Guangde Wang ◽  
Xinyu Zhang ◽  
Wenlong Jiang ◽  
Lizhong Wang

The AZO transparent conductive films are prepared by the atomic layer deposition (ALD) at a low temperature of 150 °C. The different Al–Zn doping ratios were designed during the deposition. The phase structure of the films was characterized by XRD, the electrical properties of thin films were analyzed by the Holzer test, and the optical properties of thin films were analyzed by the UV-3600 (UV-VIS-NIR) spectrophotometer. The results showed that all the films preferred the orientation of the C axis during the growth process, the AZO films have a very low resistivity of 6.955×10−4 Ω·cm with the Al doping ratio by 2%, the deposition temperature is 150 °C and the thickness of the film is 200 nm. The transmission of AZO films with the different doping ratios in the visible region is 85%. The proper doping ratio can be selected to get the excellent photoelectric properties of AZO thin films. Such low resistivity AZO transparent conductive film is expected to replace the ITO as the transparent electrode for the organic light-emitting devices and the other new generation of the optoelectronic devices.


2016 ◽  
Vol 852 ◽  
pp. 1066-1069 ◽  
Author(s):  
Hong Tao Zhao ◽  
Yi Qiao Shi ◽  
Min Tian

The Ga doped ZnO film (GZO) was fabricated via magnetron sputtering on the substrate of silica glass. The effect of substrate temperature on the photoelectric properties of GZO film, such as morphology, grain size, crystal structure and transparency was studied. The results showed us that the crystallinity of GZO film was improved by increasing the substrate temperature . The GZO film exhibited high transmittance (above 80% in the visible region) at the substrate temperature higher than 200°C. The lowest resistivity of 4.45×10-4Ω·cm and highest hall mobility of 11.7 cm2 v-1s-1 were obtained when the substrate temperature was 300°C.


2020 ◽  
pp. 096739112094948 ◽  
Author(s):  
Suélen M Amorim ◽  
Gabriel Steffen ◽  
Joel MN de S Junior ◽  
Claiton Z Brusamarello ◽  
Ana P Romio ◽  
...  

Hybrid materials composed of semiconductor oxide metals and conducting polymers have been highlighted as a new class of materials, with superior properties compared to their pure constituents. Among the studied composites to photocatalytic applications, the hybrids of titanium dioxide (TiO2) and polypyrrole (PPy) are promising due to several advantages over the pure TiO2 nanoparticles. The PPy/TiO2 composite has been effectively synthetized by chemical polymerization methods as in situ polymerization, photopolymerization, electrochemical polymerization, and molecular imprinting polymerization (MIP). All the cited methods appear to be effective in reducing the band gap energy, which suggests an increase in the formation of photoexcited electron-hole pairs and, consequently, an improvement of the light absorption in the visible region (400–700 nm). In addition, the doping of PPy/TiO2 with noble metals improves the separation of charges in the semiconductor particle, inhibiting the recombination of photogenerated electron-hole pairs. All advantages are evidenced by the characterization results of SEM, TEM, HRTEM, UV-vis DRS, FTIR, XRD, PL, TGA and electrical properties. Finally, results from literature present that PPy/TiO2 composites have better photocatalytic activity than the pure TiO2, being an alternative photocatalyst promising for visible light applications. Thus, this work presents a review of the synthesis, characterization, and application of PPy/TiO2 composites in the photocatalytic processes.


2020 ◽  
Vol 13 (03) ◽  
pp. 2050015 ◽  
Author(s):  
Lu Cheng ◽  
Nuo Yu ◽  
Yan Zhang ◽  
Zhun Shi ◽  
Haifeng Wang ◽  
...  

The development of photocatalysts with wide UV-Vis-near-infrared (NIR) photoabsorption has received tremendous interest for utilizing sunlight efficiently. In this work, Cu2(OH)PO4 superstructures are prepared by a simple hydrothermal route, and they have strong bandgap absorption in UV-Visible region and a distinctive plasmon resonance absorption in NIR region. Under the synergetic illumination of visible light and 980[Formula: see text]nm laser (3.0[Formula: see text]W[Formula: see text]cm[Formula: see text]), Cu2(OH)PO4 superstructures can degrade 89.2% MB with the elevated temperature ([Formula: see text]51∘C) of solution, which is higher than that from visible light group (50.0%), laser group (16.4%), and visible-light/exterior-heating group (62.5%, same temperature at [Formula: see text]51.0∘C). These facts reveal that Cu2(OH)PO4 superstructures exhibit NIR-laser enhanced photocatalytic activity, which not only comes from the photothermal effect-induced temperature elevation, but also mainly results from the increased production of photogenerated electron-hole pairs by NIR-laser. Therefore, Cu2(OH)PO4 superstructures can act as efficient photocatalyst with NIR-laser enhanced photocatalytic activity.


2011 ◽  
Vol 694 ◽  
pp. 824-830 ◽  
Author(s):  
Li Guo ◽  
Feng Fu ◽  
Dan Jun Wang ◽  
Xiao Dan Qiang ◽  
Qing Bo Wei ◽  
...  

Silver-doped nano-TiO2 photocatalyst were synthesized via a simple hydrothermal route. The samples were characterized by XRD, XPS, FE-SEM and UV-Vis absorption spectrum techniques. Rhodamine B was selected as the model-pollutant to evaluate the photocatalytic activity of the samples. The XRD results indicated that the Ag-doped TiO2 were pure anatase phase. The UV-Vis spectroscopy revealed that the Ag doping can increase the absorption intensity of TiO2 in the visible region, which results in the improving the photocatalytic activity of TiO2 photocatalyst. Photocatalytic experimental results revealed that Ag-doping TiO2 catalyst shows the enhancement photocatalytic activity.


2013 ◽  
Vol 743-744 ◽  
pp. 932-936
Author(s):  
Fei Yang ◽  
Wei Liang ◽  
Jin Bo Xue

In this paper, CdSe-TiO2nanotube array composite films were successfully prepared through a two-steps method. TiO2nanotube arrays were firstly prepared by anodic oxidation method, based on which the composite films of CdSe-TiO2nanotubes arrays were prepared by electrochemical deposition. The influence of the concentration of SeO2on the structure and photoelectric performance of the composite films were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and photocurrent response tests. The results show that the cubic phase CdSe particles with the size of about 15~20 nm were uniformly distributed in highly ordered TiO2nanotubes and around the mouths of the nanotubes; With the increasing of concentration of SeO2, the content of CdSe increases gradually while the photocurrent density of the composite films increased and decreased, The optimal photoelectric performance of composite films were obtained when the SeO2concentration was 4 mmol/L.


2011 ◽  
Vol 474-476 ◽  
pp. 998-1001
Author(s):  
Xiao Zhang ◽  
Hua Wang ◽  
Ji Wen Xu ◽  
Ling Yang ◽  
Ming Fang Ren

In2S3 thin films have been prepared on heated glass substrates by ultrasonic spray pyrolysis method. Structure, surface morphology and properties of films with different S/In ratios have been investigated. XRD analysis demonstrated that as-prepared In2S3 thin films have a preferential orientation along the (220) direction and no other phases are observed. Uniformity, density, crystallinity of films were significantly affected by S/In ratios, which influence photoelectric properties of the films. In2S3 thin film is close to standard stoichiometric composition when S/In ratio is 2. Optical transmittance of films is over 90% in the visible region and its energy band gap come up to 2.46eV.


Sign in / Sign up

Export Citation Format

Share Document