scholarly journals Elucidating Role of Bacteria in Psoriatic Disease: From Skin and Gut Perspectives

Author(s):  
Bakytgul Yermekbayeva ◽  
Togzhan Algazina ◽  
Madina Razbekova ◽  
Albert Pinhasov ◽  
Gulnar Batpenova ◽  
...  

Psoriasis is a chronic inflammatory disease characterized by skin lesions. Psoriasis development has been associated both with genetic and environmental factors. Though skin and gut microbiota has been implicated in number of pathologies including atopic dermatitis, inflammatory bowel disease, Crohn’s disease, allergy, obesity, its role has been poorly studied in psoriatic disease, which incorporates both psoriasis and psoriatic arthritis. This literature review summarizes the most recent and major findings on microbiota features in psoriatic disease as well as gives immune system role in the given condition. Despite conflicting findings, psoriasis patients were frequently found to have distinct microbial composition in both skin and guts especially in the major bacterial phyla, Firmicutes, Bacteroidetes, and Akkermansia. Furthermore, bacterial DNA has been found in psoriatic patients both locally and systemically, and altogether suggesting role of bacteria in the chronic disease and future studies in this field.

2021 ◽  
Author(s):  
Yang Sun ◽  
Yan Ding ◽  
Jiao Qu ◽  
Chenyang Zhang ◽  
Yuyu Zhu ◽  
...  

Psoriasis is a chronic inflammatory disease which infiltrated a large number of neutrophils among skin lesions. Here, we investigated the contribution of tyrosine phosphatase SHP2 in neutrophils, as well as its pathogenesis in psoriasis. We combined single-cell RNA sequencing with experimental verification to declare that SHP2 in neutrophils could promote the NETs formation through the ERK5 pathway, and resulted in the infiltration of inflammatory immune cells, which leads to psoriasis. Our study provides evidence for the role of SHP2 in NETosis in the progression of psoriasis, and SHP2 may be a potential therapeutic target for the treatment of psoriasis.


2018 ◽  
Vol 3 (2) ◽  
pp. 54-58
Author(s):  
Eric J. Yang ◽  
Sahil Sekhon ◽  
Kristen M. Beck ◽  
Isabelle M. Sanchez ◽  
Tina Bhutani ◽  
...  

Treatments for psoriasis and psoriatic arthritis have progressed at a rapid rate over the past 20 years, but treating patients with recalcitrant disease still remains a difficult task. Current therapies for these diseases involve topical agents, phototherapy, and systemic immunosuppression. However, the role of the nervous system in psoriasis and psoriatic arthritis remains largely unexplored. Recent animal studies and clinical trials have demonstrated that vagus nerve stimulation can decrease inflammatory processes in rheumatoid arthritis and inflammatory bowel disease. In this article, we outline the existing knowledge of the nervous system’s role in chronic inflammatory disease and discuss how these findings could be utilized in the future for treatment of psoriasis and psoriatic arthritis.


Author(s):  
Suna Asilsoy ◽  
Serdar Al

Atopic dermatitis (AD) is a chronic skin disease caused by genetic and environmental factors. Often it begins in early childhood. It is located at the first step of the process we refer to as atopic march. This feature is a precursor of the development of other allergic diseases such as asthma and allergic rhinitis. Especially in patients with atopy of food and inhalant allergens, the occurrence of other atopic diseases is more common. Although the role of these sensitivities in AD is controversial, it has been determined that some patients may trigger eczematous skin lesions. In this report, the role of allergens in atopic dermatitis are reviewed in the light of current literature.


Author(s):  
Athira Paingott Narayanan ◽  
Merin Babu ◽  
Ankitha Latika ◽  
Anjali Shobha Nair ◽  
Pooja Ajesh ◽  
...  

: Every human body has a gut microbiome which is a complex collection of microorganisms that live in the digestive tracts. The composition of the gut flora changes over time, when diet changes, overall health changes. Intestinal flora hosts more amounts of the microbes when compared to stomach flora as it's less vulnerable to the acidity of the gastric mucosa. Intestinal flora plays a major role in balancing the immune function, metabolic homeostasis, regulates inflammation, increases mineral bioavailability, synthesizes neurotransmitters, regulates appetite, regulates blood sugar and prevention against pathogens. Dysbiosis in the gut leads to various gastrointestinal disorders like inflammatory bowel disease, irritable bowel syndrome, peptic ulcer, metabolic syndromes like obesity, diabetes and various neurological disorders like autism, multiple sclerosis. Therefore, the complete wellness of our body is dependent on the microbial composition of the gut. Probiotics and prebiotic foods can add as a key element supplementing the wellness of our body.


2019 ◽  
Vol 20 (6) ◽  
pp. 1390 ◽  
Author(s):  
Tiziana Larussa ◽  
Maria Imeneo ◽  
Francesco Luzza

The current therapeutic scenario for inflammatory bowel diseases (IBD) involves aminosalicylates, corticosteroids, and immunomodulators, but concerns regarding their safety profiles and high costs heavily impact their widespread use. In recent years, the beneficial effects thatbiophenols—from fruit and vegetables—have on human health have been investigated. The antioxidant and anti-inflammatory properties of phenolic fraction, from olive leaves and fruits, have been suggested, and a potential application in gut inflammation has been supported by in vitro and IBD-animal models studies. In the present review, we first introduced the potential therapeutic role of olive tree biophenolsin chronic inflammatory disease. Then, we aimed to describe their most interesting application for gut inflammation, as the results of basic science studies and animal experimental models. Finally, the potential role of olive tree biophenols in the setting of human IBD is discussed.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Weiwei Liang ◽  
Xinjian Peng ◽  
Qingqing Li ◽  
Pingzhang Wang ◽  
Ping Lv ◽  
...  

AbstractThe physiological homeostasis of gut mucosal barrier is maintained by both genetic and environmental factors and its impairment leads to pathogenesis such as inflammatory bowel disease. A cytokine like molecule, FAM3D (mouse Fam3D), is highly expressed in mouse gastrointestinal tract. Here, we demonstrate that deficiency in Fam3D is associated with impaired integrity of colonic mucosa, increased epithelial hyper-proliferation, reduced anti-microbial peptide production and increased sensitivity to chemically induced colitis associated with high incidence of cancer. Pretreatment of Fam3D−/− mice with antibiotics significantly reduces the severity of chemically induced colitis and wild type (WT) mice co-housed with Fam3D−/− mice phenocopy Fam3D-deficiency showing increased sensitivity to colitis and skewed composition of fecal microbiota. An initial equilibrium of microbiota in cohoused WT and Fam3D−/− mice is followed by an increasing divergence of the bacterial composition after separation. These results demonstrate the essential role of Fam3D in colon homeostasis, protection against inflammation associated cancer and normal microbiota composition.


2012 ◽  
Vol 18 (4) ◽  
pp. 725-736 ◽  
Author(s):  
Siew C. Ng ◽  
Susannah Woodrow ◽  
Nisha Patel ◽  
Javaid Subhani ◽  
Marcus Harbord

2021 ◽  
Vol 22 (21) ◽  
pp. 11365
Author(s):  
Jelena Popov ◽  
Valentina Caputi ◽  
Nandini Nandeesha ◽  
David Avelar Rodriguez ◽  
Nikhil Pai

Ulcerative colitis (UC) is a chronic autoimmune disorder affecting the colonic mucosa. UC is a subtype of inflammatory bowel disease along with Crohn’s disease and presents with varying extraintestinal manifestations. No single etiology for UC has been found, but a combination of genetic and environmental factors is suspected. Research has focused on the role of intestinal dysbiosis in the pathogenesis of UC, including the effects of dysbiosis on the integrity of the colonic mucosal barrier, priming and regulation of the host immune system, chronic inflammation, and progression to tumorigenesis. Characterization of key microbial taxa and their implications in the pathogenesis of UC and colitis-associated cancer (CAC) may present opportunities for modulating intestinal inflammation through microbial-targeted therapies. In this review, we discuss the microbiota-immune crosstalk in UC and CAC, as well as the evolution of microbiota-based therapies.


2020 ◽  
Vol 21 (4) ◽  
pp. 1314 ◽  
Author(s):  
Makoto Sugaya

T helper-17 (Th17) cells, which mainly produce IL-17, are associated with development of various autoimmune diseases such as rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and psoriasis. IL-17 and related cytokines are therapeutic targets of these diseases. In atopic dermatitis (AD), Th2 cytokines such as IL-4 and IL-13 are regarded to be the main player of the disease; however, Th17 cytokines are also expressed in AD skin lesions. Expression of IL-22 rather than IL-17 is predominant in AD skin, which is contrary to cytokine expression in psoriasis skin. Relatively low IL-17 expression in AD skin can induce relatively low antimicrobial peptide expression, which may be a reason why bacterial infection is frequently seen in AD patients. Failure of clinical trials for investigating the efficacy of anti-IL-12/23 p40 in AD has suggested that IL-17 expressed in skin lesions should not be the main player but a bystander responding to barrier dysfunction.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Richard O. Williams

Studies of cytokine regulation in rheumatoid arthritis led to the development of TNFα inhibitors which are now used for a number of indications, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, psoriatic arthritis, and ankylosing spondylitis. The widespread use of biologics in the clinic offers unique opportunities for probing disease pathogenesis and this paper provides an overview of rheumatoid arthritis, with a particular emphasis on the impact of anti-TNFα therapy on pathogenetic mechanisms. An overview is also provided on the most commonly used animal models that mimic RA, including adjuvant-induced arthritis, collagen-induced arthritis, TNFα-transgenic mice, and the K/BxN and SKG models. These models have led to significant discoveries relating to the importance of pro-inflammatory cytokines in the pathogenesis of rheumatoid arthritis, resulting from disregulation of the normally finely tuned balance of pro- and anti-inflammatory cytokine signalling. In addition, experimental evidence is discussed suggesting how genetic and environmental factors can contribute to disease susceptibility. The role of effector and regulatory T cells is discussed in the light of the relatively disappointing therapeutic effects of T cell modifying agents such as anti-CD4 antibody and cyclosporin. It is concluded that comprehensive analyses of mechanisms of action of biologics and other drugs entering the clinic will be essential to optimise therapy, with the ultimate aim of providing a cure.


Sign in / Sign up

Export Citation Format

Share Document