scholarly journals Determination of Crude Oil Thickness at Night Using Thermal Imagery

Author(s):  
Toomas H. Allik

A heat transfer model, has determined millimeter crude oil thicknesses on saltwater at night.  Model inputs are calibrated thermographic imagery, weather station data, metrological observations, and crude oil thermal conductivity.  Outdoor field-testing was performed at the National Oil Spill Response & Renewable Energy Test Facility (Ohmsett) to determine model accuracy.  Alaskan North Slope (ANS), Hoover Offshore Oil Pipeline System Blend (HOOPS), and ROCK crude oils were placed at varying mm depths.  A roof-top mounted thermal camera measured the average oil surface temperature for each target and converted to oil spill thickness.  The fidelity of the thickness measurements is dependent on the accurate measurement of the atmospheric and weather parameters, sea state, heat transfer constants, crude oil evaporation rates, and calibration and stability of the thermal camera.

Author(s):  
Subhash Chandra Agarwal

Due to capacity expansion of one of our refineries located in Western India, there was a need to evacuate additional products. Pipeline, being the most economical, reliable and environment friendly mode of transportation was the obvious choice. Laying a new pipeline would have required making substantial initial capital investment. However, a crude oil pipeline, owned by another oil company, was terminating at the refinery and was not in regular use. It was decided to convert this pipeline to product service. The pipeline was taken on lease, extensively cleaned, tested and successfully converted to product service with necessary hook-up/modifications at both the ends and in-between. The paper covers the experience gathered during the process of conversion of the crude oil pipeline to product service, including modifications carried out in the pipeline system, methodology adopted for cleaning, hydro-testing and commissioning of the system, and the lessons learnt.


2017 ◽  
Vol 12 (1) ◽  
pp. 112 ◽  
Author(s):  
Leksono Mucharam ◽  
Silvya Rahmawati ◽  
Rizki Ramadhani

Oil and gas industry is one of the most capital-intensive industry in the world. Each step of oil and gas processing starting from exploration, exploitation, up to abandonment of the field, consumes large amount of capital. Optimization in each step of process is essential to reduce expenditure. In this paper, optimization of fluid flow in pipeline during oil transportation will be observed and studied in order to increase pipeline flow performance.This paper concentrates on chemical application into pipeline therefore the chemical can increase overall pipeline throughput or decrease energy requirement for oil transportation. These chemicals are called drag reducing agent, which consist of various chemicals such as surfactants, polymers, nanofluids, fibers, etc. During the application of chemical into pipeline flow system, these chemicals are already proven to decrease pump work for constant flow rate or allow pipeline to transport more oil for same amount of pump work. The first application of drag reducer in large scale oil transportation was in Trans Alaskan Pipeline System which cancel the need to build several pump stations because of the successful application. Since then, more company worldwide started to apply drag reducer to their pipeline system.Several tedious testings on laboratory should be done to examine the effect of drag reducer to crude oil that will be the subject of application. In this paper, one of the testing method is studied and experimented to select the most effective DRA from several proposed additives. For given pipeline system and crude oil type, the most optimum DRA is DRA A for pipeline section S-R and for section R-P is DRA B. Different type of oil and pipeline geometry will require different chemical drag reducer. 


1973 ◽  
Vol 1973 (1) ◽  
pp. 39-43 ◽  
Author(s):  
E. W. Wellbaum

ABSTRACT Oil spills only occur after the start-up of a facility but oil spill prevention for a pipeline-terminal-tanker complex begins with route selection and continues through design, construction, personnel training, operation and maintenance. The trans-Alaska pipeline project has faced all of the usual, and some unusual, problems which needed solutions to give maximum assurance that oil spills would not occur during the operating life of the facilities. This conference today is considering the prevention of oil spill incidents associated with tanker and pipeline operations, refineries, and transfer and storage terminals. The trans-Alaska pipeline system is concerned with each of these functions of the petroleum industry. Alyeska Pipeline Service Company is responsible for design, construction, operation, and maintenance of the pipeline system which will move crude oil produced on the Alaskan North Slope along a route to Valdez, an ice free port located on an arm of Prince William Sound. At Valdez, the oil will be transferred to ocean going tankers. The project will have at its ultimate design capacity of two million barrels per day:Almost 800 miles of 48-inch pipeline.Twelve pump stations with 650,000 installed HP.Twenty-million barrels of crude oil storage in fifty-two tanks.Five loading berths at a deep water terminal servicing a fleet of tankers ranging in size from 30,000 dwt to 250,000 dwt.Eight crude oil topping plants, manufacturing fuel for pump stations, each with a charge of 10,000 barrels per day.A ballast water treating plant capable of handling up to 800,000 barrels per day of dirty ballast.A 25,000 KW power generation plant.Several dozen mechanical refrigeration plants which will be freezing the ground in Alaska.


2020 ◽  
Vol 8 (3) ◽  
pp. 219-239
Author(s):  
ThankGod Enatimi Boye ◽  
◽  
Olusegun David Samuel ◽  

2005 ◽  
Vol 2005 (1) ◽  
pp. 1099-1103
Author(s):  
Erich R. Gundlach ◽  
Murat Cekirge ◽  
Robert Castle ◽  
Hamish Reid ◽  
Paul Sutherland

ABSTRACT The BTC (Baku-Tbilisi-Ceyhan) Project includes a 42 in (107 cm) crude oil pipeline extending west from the Caspian Sea across Azerbaijan (433 km, 260 mi), through Georgia (250 km, 150 mi), and then southward through eastern Turkey (1076 km, 645 mi) to a new marine terminal at Ceyhan on the Mediterranean Sea. In Turkey, the pipeline crosses significant mountainous terrain (>2800 m, 8,500 ft), several major rivers as well as five fault zones. The marine terminal includes 7 storage tanks and a 2.7 km (1.6 mi) jetty able to handle two 300,000-dwt tankers simultaneously. The system is designed to transport 1 million barrels per day (∼145,000 t/day). The oil spill contingency plan is designed to protect sensitive areas, catchment basins, and to prevent the migration of spilled oil. Sensitive features were determined by pre-construction surveys and risk analyses, and updated by additional fieldwork focusing on the potential movement and impacts of spilled oil. Response guidelines based on risk and logistics determined the location of equipment depots and the level of equipment necessary to recover Tier 2 spill volumes. Pipeline equipment and depots are selected to rapidly recover spilled oil and to prevent its downslope and downstream movement. The marine response strategy focuses on protection of adjacent lagoons by on-water containment at the berthing area using an oil spill response vessel (OSRV), tugboats, and other workboats, and various lengths and types of booms, skimmers and storage capabilities.


2020 ◽  
Vol 74 (2) ◽  
pp. 79-90
Author(s):  
Jasna Tolmac ◽  
Slavica Prvulovic ◽  
Marija Nedic ◽  
Dragisa Tolmac

The paper presents results of experimental research and simulation of the main parameters of crude oil pipeline transport. In Serbia, 70 % of the produced oil belongs to a paraffin type, of which over 25 % has a high content of paraffin. High-content paraffin oil usually has a high pour point. The paraffin content in crude oil from Vojvodina, Serbia, is in the range 7.5 to 26 %, and the oil pour temperature varies from 18 to 36?C. The imported crude oil has a flow point max. 8?C. Homogenization, i.e. mixing of domestic and imported crude oil, improves the transport properties and decreases the pour point. After homogenization, the crude oil is pre-heated, and then transported by a pipeline to the refinery for further processing. Heating induces modification of crude oil physical properties, especially flow properties so to prevent wax formation within the oil pipeline. The aim of this paper was to determine operating parameters and flow characteristics for a particular oil pipeline (428 mm inner diameter, 91,000 m length) under real operating conditions. By heating in the range of 20 - 50?C, the viscosity of crude oil was reduced, approaching the viscosity of water. The pipeline is isolated (100 mm thick isolation) and buried into in the ground (1 m depth). It is found that the heat transfer coefficient has a dominant influence on the cooling rate of the oil in the pipeline. The heat transfer coefficient is mainly determined by the isolation thickness so that it was determined as 0.60 W m-2 K-1 for + 100 mm thickness, while it was 2.20 W m-2 K-1 for the non-isolated pipeline. Heat losses through the main pipeline ranged from 36 - 110 kJ m-1 h-1 (10 - 30 W m-1). The difference between the starting and the ending temperature of crude oil ranged from 10 to 12?C. Such a decrease of ?t = 10 oC and, consequently, the increase in viscosity induced a noti-ceable increase in the pressure drop and pump power by 3 to 4 %, at the maximum flowrate of 0.194 m3 s-1 (700 m3 h-1). The cooling rate during transportation under stationary thermal and hydraulic conditions is in the range 0.52 ? 0.5 oC h-1. In the case of domestic oil (Vojvodina, Serbia) transport, the downtime should not exceed 24 h, since stopping and cooling of the oil would result in formation of solid paraffin particles followed by oil gelation.


Author(s):  
Travis Mecham ◽  
Galen Stanley ◽  
Michael Pelletier ◽  
Jim C. P. Liou

Recent advances in SCADA and leak detection system technologies lead to higher scan rates and faster model speeds. As these model speeds increase and the inherent mathematical uncertainties in implicit method solutions are reduced, errors and uncertainties in measurement of the physical properties of the fluids transported by pipeline come to dominate the confidence calculations for computer generated leak alerts in the control center. The ability to collect more data must be supported by the need for better model data in order to achieve optimal leak detection system performance. This is particularly true when the products transported are non-homogeneous and have strong viscosity-vs-temperature relationships. These are characteristics of crude oils in California’s San Joaquin Valley where significant heating is required to pump these oils in an efficient manner. Proper characterization and correct mathematical expression of these physical properties in leak models has become critical. This paper presents these new developments in the context of an implementation of this new technology for the Pacific Pipeline System (PPS). PPS is a recently constructed and commissioned 209 km (130-mile), 50.8 cm (20″) diameter, insulated, hot crude oil pipeline between the southern portion of California’s San Joaquin Valley and refineries in the Los Angeles basin. Operational temperatures in this line vary from ambient to 82.2°C (180°F) with pressures ranging from 345 kPa (50 psi) to 11,720 kPa (1700 psi). Due to the unique geometry of the line, facilities along the route include pumping stations, metering stations and numerous “throttle-type” pressure reduction facilities. On PPS, a high-speed leak detection model is supported by a fiber optic (OC-1) communication backbone with data rate capacities in excess of 50 Megabits Per Second (MPS). Total scan times for the distributed communication system have been reduced to 1/4 second — each facility reports data to the SCADA host four times each second. A corresponding 1/4 second leak detection model cycle leads to selection of Methods of Characteristics segments on the order of 260 meters (850 feet). This resolution, in conjunction with the advanced instrumentation package of PPS, makes detection of very small leaks realizable. This paper starts with an overview of the system and combines a mix of the theoretical requirements imposed by the mathematical solutions with a practical description of the laboratory procedures and propagated experimental errors. The paper reviews temperature-related errors and uncertainties and their influence on leak detection performance.


2021 ◽  
Vol 107 ◽  
pp. 122-128
Author(s):  
Aidar Kadyirov ◽  
Julia Karaeva ◽  
Ekaterina Vachagina

The paper presents a mathematical model and the results of numerical calculations of heat transfer processes during the flow of highly viscous crude oil in an oil pipeline. Comparison with literature data is performed. The samples of oil from the field of the Republic of Tatarstan (Russia) that are characterized by high viscosity were considered as crude oil. The influence of air temperature on the temperature distribution in the soil was investigated. The analysis of the distribution of crude oil temperature along the length of the pipeline was carried out.


Sign in / Sign up

Export Citation Format

Share Document