scholarly journals New Design of Phase-Shifted Full-Bridge Power Converter for Photovoltaic Application

Author(s):  
Wasan Phetphimoon ◽  
Krischonme Bhumkittipich

This paper presents the design of a high frequency zero voltage switching (ZVS) full-bridge converter with a phase-shifted driving signal for photovoltaic applications. The resonant power converter can provide high-power capacity under high-frequency operation. The proposed power converter can also reduce the size of the transformer under the same power rating. The high-frequency transformer was developed by using the resonant and switching frequencies of the power converter to reduce the switching loss and to improve the system efficiency. Phase-shifted modulation was selected to drive the switches of a full-bridge power converter based on the switching loss minimization method. The desired output voltage was controlled using a closed-loop controller under a loop gain stability margin. The simulation results showed that the output voltage can be controlled to the desired constant when the input voltage changes from 30 VDC to 60 VDC. The desired output voltage of power converter is constant at 400 VDC. The power converter can transfer the DC supply to a 220 VAC household via grid-connected inverter. Therefore, the proposed study showed the effectiveness of the phase-shift ZVS full-bridge power converter with high-frequency transformer. This power converter can control the operation of the desired voltage system and has a small sizing of power converter system, low switching loss, and high system efficiency.

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 580
Author(s):  
Bor-Ren Lin ◽  
Yi-Hao Peng

This paper studies and implements a power converter to have less current ripple output and wide voltage input operation. A three-leg converter with different primary turns is presented on its high-voltage side to extend the input voltage range. The current doubler rectification circuit is adopted on the output side to have low current ripple capability. From the switching states of the three-leg converter, the presented circuit has two equivalent sub-circuits under different input voltage ranges (Vin = 120–270 V or 270–600 V). The general phase-shift pulse-width modulation is employed to control the presented converter so that power devices can be turned on at zero voltage in order to reduce switching loss. Compared to two-stage circuit topologies with a wide voltage input operation, the presented converter has the benefits of simple circuit structure, easy control algorithm using a general integrated circuit or digital controller, and less components. The performance of the presented circuit is confirmed and validated by an 800 W laboratory prototype.


Author(s):  
Mohamed Salem ◽  
Awang Jusoh ◽  
N.Rumzi N. Idris ◽  
Tole Sutikno ◽  
Iftikhar Abid

This paper presents a study on a new full bridge series resonant converter (SRC) with wide zero voltage switching (ZVS) range, and higher output voltage. The high frequency transformer is connected in series with the LC series resonant tank. The tank inductance is therefore increased; all switches having the ability to turn on at ZVS, with lower switching frequency than the LC tank resonant frequency. Moreover, the step-up high frequency (HF) transformer design steps are introduced in order to increase the output voltage to overcome the gain limitation of the conventional SRC. Compared to the conventional SRC, the proposed converter has higher energy conversion, able to increase the ZVS range by 36%, and provide much higher output power. Finally, the a laboratory prototypes of the both converters with the same resonant tank parameters and input voltage are examined based on 1 and 2.2 kW power respectively, for veryfing  the reliability of the performance and the operation principles of both converters.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2536
Author(s):  
Bor-Ren Lin ◽  
Yi-Kuan Lin

A full-bridge converter with an additional resonant circuit and variable secondary turns is presented and achieved to have soft-switching operation on active devices, wide voltage input operation and low freewheeling current loss. The resonant tank is linked to the lagging-leg of the full bridge pulse-width modulation converter to realize zero-voltage switching (ZVS) characteristic on the power switches. Therefore, the wide ZVS operation can be accomplished in the presented circuit over the whole input voltage range and output load. To overcome the wide voltage variation on renewable energy applications such as DC wind power and solar power conversion, two winding sets are used on the output-side of the proposed converter to obtain the different voltage gains. Therefore, the wide voltage input from 90 to 450 V (Vin,max = 5Vin,min) is implemented in the presented circuit. To further improve the freewheeling current loss issue in the conventional phase-shift pulse-width modulation converter, an auxiliary DC voltage generated from the resonant circuit is adopted to reduce this freewheeling current loss. Compared to the multi-stage DC converters with wide input voltage range operation, the proposed circuit has a low freewheeling current loss, low switching loss and a simple control algorithm. The studied circuit is tested and the experimental results are demonstrated to testify the performance of the resented circuit.


Author(s):  
AnuPriya K R ◽  
Sasilatha T

The system represented during this paper uses 3 matrix converters and a high frequency electrical device to attain isolation and voltage transformation from primary to secondary aspect. Two matrix converters manufacture high frequency voltage across a transformer, with open all over primary. a 3rd matrix device converts the high frequency cut voltage to line frequency. The non-idealities like outflow inductance of the electrical device have a big impact on the device performance. This paper studies the impact of outflow inductance on the regulation of the output voltage of the device. The simulation study has been carried out in SIMULINK and also the results are presented.


Interleaved Boost Full Bridge integrated LLC resonant (IBFB- LLC) is an isolated DC/DC converter with directional power flow, which can cope with a wide input voltage range of PV applications. The main losses of the converter are switching losses of the power switches and transformers losses. This paper proposes a method to improve the efficiency of the IBFB converter due to zero voltage switching technique, in combination with employing new SiC MOSFET technology instead of the conventional Si MOSFET. In addition, Litz wire is also adopted to reduce the losses on the high frequency isolation transformer. Both numerical simulations and experiments with a prototype 2.5kW converter are implemented to verify the feasibility and effectiveness of the proposed solution.


2005 ◽  
Vol 107 ◽  
pp. 81-86 ◽  
Author(s):  
M. Nisoa ◽  
D. Srinoum ◽  
P. Kerdthongmee

High-voltage high-frequency power supply using voltage-fed load resonant inverter with a series-compensated resonant inductor has been developed for efficient atmospheric surface glow barrier discharges(ASGBD). It produces a controllable frequency and sinusoidal alternating voltage output. The maximum output voltage is about 6 kV peak to peak. Resonant power converter can be tune easily to the resonant frequency of the load. Operating frequency varies according to the load and voltage level typically in the range of 10 kHz and 1 MHz range. The output voltage is controlled by using pulse width modulation technique. The power supply developed in this paper is applied successfully for ozoniser that can produce high concentrate ozone by using ASGBD for agricultural industry applications.


Author(s):  
Supapong Nutwong ◽  
Anawach Sangswang ◽  
Sumate Naetiladdanon ◽  
Ekkachai Mujjalinvimut

This paper presents a technique to control the output voltage of a series-parallel (SP) topology inductive power transfer (IPT) system using only a controller, located on the primary side. This reduces the cost, size, complexity and loss of the system compared to conventional IPT dual-side controllers. An asymmetrical duty cycle control (ADC) of full-bridge inverters was used to control the DC output voltage to its designed value. Additionally, a zero voltage switching (ZVS) operation can be obtained at all power levels by varying the switching frequency of the inverter. Theoretical analysis was performed through a mutual inductance coupling model and verified by computer simulation. Experimental results of the circular magnetic structure IPT system with an adjustable air-gap confirm the validity of the proposed controller. The system efficiency was improved throughout the operation and the improvement became obvious as the output power was decreased.


Sign in / Sign up

Export Citation Format

Share Document