scholarly journals A Novel Family of Quadrupole-Orbitrap Mass Spectrometers for a Broad Range of Analytical Applications

Author(s):  
Jan-Peter Hauschild ◽  
Amelia Corinne Peterson ◽  
Erik Couzijn ◽  
Eduard Denisov ◽  
Denis Chernyshev ◽  
...  

The rapidly increasing adoption of high-resolution accurate-mass methods in analytical laboratories has fueled demand for instruments that combine high performance and reliability with small size and greater ease-of-use. This paper presents the major design principles that are driving the evolution of the hybrid quadrupole-Orbitrap instrument architecture to enable a greater range of applications and users. These principles may be summarized as follows: better usage of physical space and better access for service by means of size reduction of pumping and ion optics; expanded use of technologies from electronics in ion-optical design; flexibility in performance via modularity of design of the hardware and software components; and, harmonization of interfaces with other instruments to facilitate sharing and transferability of analytical workflows. The design of a novel family of hybrid mass spectrometers is described in detail, and performance evaluation is carried out on a wide variety of samples for its three representatives: the Orbitrap Exploris 120, Orbitrap Exploris 240 and Orbitrap Exploris 480 mass spectrometers.The new instrument family is shown to offer compelling potential not only for high-end proteomics and biopharmaceutical applications, but also for screening, trace, targeted and clinical analysis by liquid chromatography/mass spectrometry methods.

2008 ◽  
Vol 1068 ◽  
Author(s):  
Augusto Gutierrez-Aitken ◽  
Patty Chang-Chien ◽  
Bert Oyama ◽  
Kelly Tornquist ◽  
Khanh Thai ◽  
...  

ABSTRACTTo meet increasingly challenging and complex systems requirements, it is not enough to use one single semiconductor technology but to integrate several high performance technologies in an efficient and cost effective way. Heterogeneous integration (HI) approaches lead to a significant higher design flexibility and performance. In this paper we present some of the HI approaches that are being used and developed at Northrop Grumman Space Technology (NGST) that include selective epitaxial growth, metamorphic growth and wafer level packaging (WLP) technology. More recently we are developing a scaled and selective wafer packaging technique to integrate III-V semiconductors with silicon under the COSMOS DARPA program.


Author(s):  
Jungwon Kim ◽  
Jeffrey S Vetter

Recently, persistent data structures, like key-value stores (KVSs), which are stored in a high-performance computing (HPC) system’s nonvolatile memory, provide an attractive solution for a number of emerging challenges like limited I/O performance. Data compression and encryption are two well-known techniques for improving several properties of such data-oriented systems. This article investigates how to efficiently integrate data compression and encryption into persistent KVSs for HPC with the ultimate goal of hiding their costs and complexity in terms of performance and ease of use. Our compression technique exploits deep memory hierarchy in an HPC system to achieve both storage reduction and performance improvement. Our encryption technique provides a practical level of security and enables sharing of sensitive data securely in complex scientific workflows with nearly imperceptible cost. We implement the proposed techniques on top of a distributed embedded KVS to evaluate the benefits and costs of incorporating these capabilities along different points in the dataflow path, illustrating differences in effective bandwidth, latency, and additional computational expense on Swiss National Supercomputing Centre’s Grand Tavé and National Energy Research Scientific Computing Center’s Cori.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


Author(s):  
Y. Taniguchi ◽  
E. Nakazawa ◽  
S. Taya

Imaging energy filters can add new information to electron microscopic images with respect to energy-axis, so-called electron spectroscopic imaging (ESI). Recently, many good results have been reported using this imaging technique. ESI also allows high-contrast observation of unstained biological samples, becoming a trend of the field of morphology. We manufactured a new type of energy filter as a trial production. This energy filter consists of two magnets, and we call γ-filter since the trajectory of electrons shows ‘γ’-shape inside the filter. We evaluated the new energyγ-filter TEM with the γ-filter.Figure 1 shows schematic view of the electron optics of the γ-type energy filter. For the determination of the electron-optics of the γ-type energy filter, we used the TRIO (Third Order Ion Optics) program which has been developed for the design of high resolution mass spectrometers. The TRIO takes the extended fringing fields (EFF) into consideration. EFF makes it difficult to design magnetic energy filters with magnetic sector fields.


Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


2020 ◽  
Vol 13 (3) ◽  
pp. 313-318 ◽  
Author(s):  
Dhanapal Angamuthu ◽  
Nithyanandam Pandian

<P>Background: The cloud computing is the modern trend in high-performance computing. Cloud computing becomes very popular due to its characteristic of available anywhere, elasticity, ease of use, cost-effectiveness, etc. Though the cloud grants various benefits, it has associated issues and challenges to prevent the organizations to adopt the cloud. </P><P> Objective: The objective of this paper is to cover the several perspectives of Cloud Computing. This includes a basic definition of cloud, classification of the cloud based on Delivery and Deployment Model. The broad classification of the issues and challenges faced by the organization to adopt the cloud computing model are explored. Examples for the broad classification are Data Related issues in the cloud, Service availability related issues in cloud, etc. The detailed sub-classifications of each of the issues and challenges discussed. The example sub-classification of the Data Related issues in cloud shall be further classified into Data Security issues, Data Integrity issue, Data location issue, Multitenancy issues, etc. This paper also covers the typical problem of vendor lock-in issue. This article analyzed and described the various possible unique insider attacks in the cloud environment. </P><P> Results: The guideline and recommendations for the different issues and challenges are discussed. The most importantly the potential research areas in the cloud domain are explored. </P><P> Conclusion: This paper discussed the details on cloud computing, classifications and the several issues and challenges faced in adopting the cloud. The guideline and recommendations for issues and challenges are covered. The potential research areas in the cloud domain are captured. This helps the researchers, academicians and industries to focus and address the current challenges faced by the customers.</P>


2020 ◽  
Vol 12 (2) ◽  
pp. 19-50 ◽  
Author(s):  
Muhammad Siddique ◽  
Shandana Shoaib ◽  
Zahoor Jan

A key aspect of work processes in service sector firms is the interconnection between tasks and performance. Relational coordination can play an important role in addressing the issues of coordinating organizational activities due to high level of interdependence complexity in service sector firms. Research has primarily supported the aspect that well devised high performance work systems (HPWS) can intensify organizational performance. There is a growing debate, however, with regard to understanding the “mechanism” linking HPWS and performance outcomes. Using relational coordination theory, this study examines a model that examine the effects of subsets of HPWS, such as motivation, skills and opportunity enhancing HR practices on relational coordination among employees working in reciprocal interdependent job settings. Data were gathered from multiple sources including managers and employees at individual, functional and unit levels to know their understanding in relation to HPWS and relational coordination (RC) in 218 bank branches in Pakistan. Data analysis via structural equation modelling, results suggest that HPWS predicted RC among officers at the unit level. The findings of the study have contributions to both, theory and practice.


2019 ◽  
Vol 14 ◽  
pp. 155892501989525
Author(s):  
Yu Yang ◽  
Yanyan Jia

Ultrafine crystallization of industrial pure titanium allowed for higher tensile strength, corrosion resistance, and thermal stability and is therefore widely used in medical instrumentation, aerospace, and passenger vehicle manufacturing. However, the ultrafine crystallizing batch preparation of tubular industrial pure titanium is limited by the development of the spinning process and has remained at the theoretical research stage. In this article, the tubular TA2 industrial pure titanium was taken as the research object, and the ultrafine crystal forming process based on “5-pass strong spin-heat treatment-3 pass-spreading-heat treatment” was proposed. Based on the spinning process test, the ultimate thinning rate of the method is explored and the evolution of the surface microstructure was analyzed by metallographic microscope. The research suggests that the multi-pass, medium–small, and thinning amount of spinning causes the grain structure to be elongated in the axial and tangential directions, and then refined, and the axial fiber uniformity is improved. The research results have certain scientific significance for reducing the consumption of high-performance metals improving material utilization and performance, which also promote the development of ultrafine-grain metals’ preparation technology.


2021 ◽  
pp. 016264342199410
Author(s):  
Jordan Yassine ◽  
Leigh Ann Tipton-Fisler

Check-in/Check-Out (CICO) has a long line of research evidence demonstrating its effectiveness in increasing prosocial behavior. The current paper demonstrated an electronic application of CICO utilizing Google Sheets® with teacher feedback. Google Sheets® offers an inexpensive, collaborative, and remote method for tracking behaviors. In the first study, 2,322 teacher ratings (from 38 teachers) were compared between traditional paper CICO forms or electronic Google Sheets®. Results found that teacher ratings were significantly more complete with the use of the electronic forms. In the second study, an electronic CICO form was used for progress monitoring and performance feedback with a middle school student. Through the form we were able to successfully track our participant’s behavior change in response to CICO with the combination of feedback and a differential reinforcement intervention. Social validity showed that overall teacher ratings were high with respect to ease of use, usefulness, cost-effectiveness, and convenience of the electronic Google Sheets®.


Author(s):  
Kersten Schuster ◽  
Philip Trettner ◽  
Leif Kobbelt

We present a numerical optimization method to find highly efficient (sparse) approximations for convolutional image filters. Using a modified parallel tempering approach, we solve a constrained optimization that maximizes approximation quality while strictly staying within a user-prescribed performance budget. The results are multi-pass filters where each pass computes a weighted sum of bilinearly interpolated sparse image samples, exploiting hardware acceleration on the GPU. We systematically decompose the target filter into a series of sparse convolutions, trying to find good trade-offs between approximation quality and performance. Since our sparse filters are linear and translation-invariant, they do not exhibit the aliasing and temporal coherence issues that often appear in filters working on image pyramids. We show several applications, ranging from simple Gaussian or box blurs to the emulation of sophisticated Bokeh effects with user-provided masks. Our filters achieve high performance as well as high quality, often providing significant speed-up at acceptable quality even for separable filters. The optimized filters can be baked into shaders and used as a drop-in replacement for filtering tasks in image processing or rendering pipelines.


Sign in / Sign up

Export Citation Format

Share Document