scholarly journals Zika E Glycan Loop Region and Guillain-Barré Syndrome-Related Proteins: A Possible Molecular Mimicry to be Taken in Account for Vaccine Development

Author(s):  
Lebeau Grégorie ◽  
Frumence Etienne ◽  
Turpin Jonathan ◽  
Hoarau Jean-jacques ◽  
Gadea Gilles ◽  
...  

Neurological complications of infection by the mosquito-borne Zika virus (ZIKV) include Guillain-Barré syndrome (GBS), an acute inflammatory demyelinating polyneuritis. GBS was first associated with recent ZIKV epidemics caused by the emergence of ZIKV Asian lineage in South Pacific. Here, we hypothesize that ZIKV-associated GBS relates to a molecular mimicry between viral envelope E (E) protein and neural proteins involved in GBS. Analysis of ZIKV epidemic strains showed that glycan loop (GL) region of the E protein includes an IVNDT motif which is conserved in voltage-dependent L-type calcium channel subunit alpha-1C (Cav1.2) and Heat Shock 70 kDa protein 12A (HSP70 12A). Both VSCC-alpha 1C and HSP70 12A belong to protein families which have been associated with neurological autoimmune diseases in central nervous system. The purpose of our in silico analysis is to point out that IVNDT motif of ZIKV E-GL region should be taken in consideration for the development of safe and effective anti-Zika vaccines by precluding the possibility of adverse neurologic events including autoimmune diseases such as GBS.

Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 283
Author(s):  
Grégorie Lebeau ◽  
Etienne Frumence ◽  
Jonathan Turpin ◽  
Floran Begue ◽  
Jean-Jacques Hoarau ◽  
...  

The neurological complications of infection by the mosquito-borne Zika virus (ZIKV) include Guillain–Barré syndrome (GBS), an acute inflammatory demyelinating polyneuritis. GBS was first associated with recent ZIKV epidemics caused by the emergence of the ZIKV Asian lineage in South Pacific. Here, we hypothesize that ZIKV-associated GBS relates to a molecular mimicry between viral envelope E (E) protein and neural proteins involved in GBS. The analysis of the ZIKV epidemic strains showed that the glycan loop (GL) region of the E protein includes an IVNDT motif which is conserved in voltage-dependent L-type calcium channel subunit alpha-1C (Cav1.2) and Heat Shock 70 kDa protein 12A (HSP70 12A). Both VSCC-alpha 1C and HSP70 12A belong to protein families which have been associated with neurological autoimmune diseases in central nervous system. The purpose of our in silico analysis is to point out that IVNDT motif of ZIKV E-GL region should be taken in consideration for the development of safe and effective anti-Zika vaccines by precluding the possibility of adverse neurologic events including autoimmune diseases such as GBS through a potent mimicry with Heat Shock 70 kDa protein 12A (HSP70 12A).


Author(s):  
Anjali Garg ◽  
Neelja Singhal ◽  
Manish Kumar

Abstract Mycobacterium avium subspecies paratuberculosis (MAP) exhibits ‘molecular mimicry’ with the human host resulting in several autoimmune diseases such as multiple sclerosis, type 1 diabetes mellitus (T1DM), Hashimoto’s thyroiditis, Crohn’s disease (CD), etc. The conventional therapy for autoimmune diseases includes immunosuppressants or immunomodulators that treat the symptoms rather than the etiology and/or causative mechanism(s). Eliminating MAP–the etiopathological agent might be a better strategy to treat MAP-associated autoimmune diseases. In this case study, we conducted a systematic in silico analysis to identify the metabolic chokepoints of MAP’s mimicry proteins and their interacting partners. The probable inhibitors of chokepoint proteins were identified using DrugBank. DrugBank molecules were stringently screened and molecular interactions were analyzed by molecular docking and ‘off-target’ binding. Thus, we identified 18 metabolic chokepoints of MAP mimicry proteins and 13 DrugBank molecules that could inhibit three chokepoint proteins viz. katG, rpoB and narH. On the basis of molecular interaction between drug and target proteins finally eight DrugBank molecules, viz. DB00609, DB00951, DB00615, DB01220, DB08638, DB08226, DB08266 and DB07349 were selected and are proposed for treatment of three MAP-associated autoimmune diseases namely, T1DM, CD and multiple sclerosis. Because these molecules are either approved by the Food and Drug Administration or these are experimental drugs that can be easily incorporated in clinical studies or tested in vitro. The proposed strategy may be used to repurpose drugs to treat autoimmune diseases induced by other pathogens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Pralow ◽  
Alexander Nikolay ◽  
Arnaud Leon ◽  
Yvonne Genzel ◽  
Erdmann Rapp ◽  
...  

AbstractHere, we present for the first time, a site-specific N-glycosylation analysis of proteins from a Brazilian Zika virus (ZIKV) strain. The virus was propagated with high yield in an embryo-derived stem cell line (EB66, Valneva SE), and concentrated by g-force step-gradient centrifugation. Subsequently, the sample was proteolytically digested with different enzymes, measured via a LC–MS/MS-based workflow, and analyzed in a semi-automated way using the in-house developed glyXtoolMS software. The viral non-structural protein 1 (NS1) was glycosylated exclusively with high-mannose structures on both potential N-glycosylation sites. In case of the viral envelope (E) protein, no specific N-glycans could be identified with this method. Nevertheless, N-glycosylation could be proved by enzymatic de-N-glycosylation with PNGase F, resulting in a strong MS-signal of the former glycopeptide with deamidated asparagine at the potential N-glycosylation site N444. This confirmed that this site of the ZIKV E protein is highly N-glycosylated but with very high micro-heterogeneity. Our study clearly demonstrates the progress made towards site-specific N-glycosylation analysis of viral proteins, i.e. for Brazilian ZIKV. It allows to better characterize viral isolates, and to monitor glycosylation of major antigens. The method established can be applied for detailed studies regarding the impact of protein glycosylation on antigenicity and human pathogenicity of many viruses including influenza virus, HIV and corona virus.


2005 ◽  
Vol 133 (Suppl. 1) ◽  
pp. 9-15 ◽  
Author(s):  
Marija Mostarica-Stojkovic

The main function of the immune system is to protect the body by responding to invading microorganisms. Immunologic tolerance is the basic property of the immune system that provides for self/non-self discrimination so that the immune system can protect the host from external pathogens without reacting against itself. Central tolerance is achieved by the clonal deletion of self-reactive lymphocytes expressing receptors with high avidity for self. Autoreactive lymphocytes which escaped selection in the central lymphoid organs are present in the peripheral repertoire but but are kept under control by multiple diverse peripheral tolerance mechanisms acting either directly on the self-reactive T cell (T-cell intrinsic) or indirectly via additional cells (T-cell extrinsic). Intrinsic mec hanisms include ignorance of autoantigens, anergy, phenotype skewing or activation-induced cell death of autoreactive T lymphocytes, while extrinsic mechanisms act through immature and/ or tolerogenic dendritic cells as well as different types of regulatory cells. Autoimmune diseases are associated with humoral or cell-mediated immune reactions against one or more of the body?s own constituents. Activation and clonal expansion of autoreactive lymhocytes is a crucial step in the pathogenesis of autoimmune diseases. They result from the complex interactions between genetic traits and environmental factors, among which infections are the most likely cause. Several basic mechanisms may be operating whereby an infectious agent actually induces apparent autoimmne reactivity including molecular mimicry, bystander activation, induction of costimulation, polyclonal activation, altered processing and expression of cryptic antigens. Although many questions regarding autotolerance and etiop athogenestis of autoimmunity have yet to be resolved, it is evident that multiple overlapping pathways are operative in establishing, maintaining and breaking autotolerance, as well as during the initiation, progression, and final effector phases of autoimmunity.


2000 ◽  
Vol 74 (5) ◽  
pp. 2333-2342 ◽  
Author(s):  
Martin J. B. Raamsman ◽  
Jacomine Krijnse Locker ◽  
Alphons de Hooge ◽  
Antoine A. F. de Vries ◽  
Gareth Griffiths ◽  
...  

ABSTRACT The small envelope (E) protein has recently been shown to play an essential role in the assembly of coronaviruses. Expression studies revealed that for formation of the viral envelope, actually only the E protein and the membrane (M) protein are required. Since little is known about this generally low-abundance virion component, we have characterized the E protein of mouse hepatitis virus strain A59 (MHV-A59), an 83-residue polypeptide. Using an antiserum to the hydrophilic carboxy terminus of this otherwise hydrophobic protein, we found that the E protein was synthesized in infected cells with similar kinetics as the other viral structural proteins. The protein appeared to be quite stable both during infection and when expressed individually using a vaccinia virus expression system. Consistent with the lack of a predicted cleavage site, the protein was found to become integrated in membranes without involvement of a cleaved signal peptide, nor were any other modifications of the polypeptide observed. Immunofluorescence analysis of cells expressing the E protein demonstrated that the hydrophilic tail is exposed on the cytoplasmic side. Accordingly, this domain of the protein could not be detected on the outside of virions but appeared to be inside, where it was protected from proteolytic degradation. The results lead to a topological model in which the polypeptide is buried within the membrane, spanning the lipid bilayer once, possibly twice, and exposing only its carboxy-terminal domain. Finally, electron microscopic studies demonstrated that expression of the E protein in cells induced the formation of characteristic membrane structures also observed in MHV-A59-infected cells, apparently consisting of masses of tubular, smooth, convoluted membranes. As judged by their colabeling with antibodies to E and to Rab-1, a marker for the intermediate compartment and endoplasmic reticulum, the E protein accumulates in and induces curvature into these pre-Golgi membranes where coronaviruses have been shown earlier to assemble by budding.


Circulation ◽  
2018 ◽  
Vol 137 (suppl_1) ◽  
Author(s):  
Steven R Gundry

All autoimmune diseases are highly associated with increased rates of coronary artery and vascular disease secondary to immune cell attack on epithelial cells. The causes of autoimmune disease (AID) seem to be multifactorial. However, the idea that derangement of the microbiome, breaches of the intestinal barrier (leaky gut) and introduction into the human diet of plant defense molecules such as lectins, which are capable of molecular mimicry, prompted our group to investigate the application of a lectin limited diet, coupled with probiotics and prebiotics (The Pant Paradox Protocol) to impact biomarker proven autoimmune disease activity in humans and their impact on endothelial biomarkers of inflammation. One hundred and two consecutive patients with immunoassay markers of autoimmune disease activity, i.e., RF, anti-CCP, ANA, Histone, etc, and signs and symptoms of RA, Lupus, Sjogrens, Crohns, Colitis, Scleroderma, Mixed Connective Tissue Disease, and biomarkers of endothelial inflammation, were enrolled into a program of elimination of major dietary lectins, consisting of all grains and pseudo grains, beans and legumes, peanuts, cashews, nightshades, squashes, and Casein A1 milk products (The Plant Paradox Program), supplemented with probiotics and prebiotics including resistant starches and polyphenol supplements. All pts initially low Vit D levels and low Omega 3 index and adiponectin levels above 16mg/dl. Biomarkers of inflammation, hs-CRP, TNF-alpha, IL-6, fibrinogen, myeloperoxidase and autoimmune markers were measured every 3 months. 95/102 patients achieved complete resolution of autoimmune markers and inflammatory markers within 9 months. The other 7/102 patients all had reduced markers, but incomplete resolution. 80/102 patients were weaned from all immunosuppressive and/or biologic medications without rebound. We conclude that a lectin limited diet, supplemented with pro and prebiotics, and polyphenols are capable of curing or putting into remission most autoimmune diseases.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Mona Moballegh Naseri ◽  
Saeed Shams ◽  
Mohammad Moballegh Naseri ◽  
Bita Bakhshi

Abstract Objective Vaccination is an important strategy for the eradication of infectious diseases. CadF protein of Campylobacter jejuni is one of the important factors in the pathogenesis of this bacterium. The purpose of this work was to perform a bioinformatics study to identify an epitope-based CadF vaccine, as a subunit vaccine. Full protein sequences of CadF were extracted from the NCBI and UniProt databases and subjected to in silico evaluations, including sequence analysis, allergenicity, antigenicity, epitope conservancy, and molecular docking assessments done by different servers. Results The results showed that CadF was a highly conserved protein belonging to the outer member proteins superfamily. Among the evaluated epitopes, LSDSLALRL was identified as an antigenic and non-allergenic peptide with a suitable structure for vaccine development. It was also able to stimulate both T and B cells. This 9-mer peptide was located in 136–144 segment of CadF protein and interacted with both HLA-A 0101 and HLA-DRB1 0101 alleles. Overall, the obtained theoretical results showed that CadF protein could be used for designing and evaluating a new effective vaccine against C. jejuni.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 762 ◽  
Author(s):  
Maria K. Smatti ◽  
Farhan S. Cyprian ◽  
Gheyath K. Nasrallah ◽  
Asmaa A. Al Thani ◽  
Ruba O. Almishal ◽  
...  

For a long time, viruses have been shown to modify the clinical picture of several autoimmune diseases, including type 1 diabetes (T1D), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren’s syndrome (SS), herpetic stromal keratitis (HSK), celiac disease (CD), and multiple sclerosis (MS). Best examples of viral infections that have been proposed to modulate the induction and development of autoimmune diseases are the infections with enteric viruses such as Coxsackie B virus (CVB) and rotavirus, as well as influenza A viruses (IAV), and herpesviruses. Other viruses that have been studied in this context include, measles, mumps, and rubella. Epidemiological studies in humans and experimental studies in animal have shown that viral infections can induce or protect from autoimmunopathologies depending on several factors including genetic background, host-elicited immune responses, type of virus strain, viral load, and the onset time of infection. Still, data delineating the clear mechanistic interaction between the virus and the immune system to induce autoreactivity are scarce. Available data indicate that viral-induced autoimmunity can be activated through multiple mechanisms including molecular mimicry, epitope spreading, bystander activation, and immortalization of infected B cells. Contrarily, the protective effects can be achieved via regulatory immune responses which lead to the suppression of autoimmune phenomena. Therefore, a better understanding of the immune-related molecular processes in virus-induced autoimmunity is warranted. Here we provide an overview of the current understanding of viral-induced autoimmunity and the mechanisms that are associated with this phenomenon.


2019 ◽  
Vol 88 (1) ◽  
pp. 2 ◽  
Author(s):  
Kowit Hengphasatporn ◽  
Arthur Garon ◽  
Peter Wolschann ◽  
Thierry Langer ◽  
Shigeta Yasuteru ◽  
...  

Dengue infection is caused by a mosquito-borne virus, particularly in children, which may even cause death. No effective prevention or therapeutic agents to cure this disease are available up to now. The dengue viral envelope (E) protein was discovered to be a promising target for inhibition in several steps of viral infection. Structure-based virtual screening has become an important technique to identify first hits in a drug screening process, as it is possible to reduce the number of compounds to be assayed, allowing to save resources. In the present study, pharmacophore models were generated using the common hits approach (CHA), starting from trajectories obtained from molecular dynamics (MD) simulations of the E protein complexed with the active inhibitor, flavanone (FN5Y). Subsequently, compounds presented in various drug databases were screened using the LigandScout 4.2 program. The obtained hits were analyzed in more detail by molecular docking, followed by extensive MD simulations of the complexes. The highest-ranked compound from this procedure was then synthesized and tested on its inhibitory efficiency by experimental assays.


2020 ◽  
Vol 94 (20) ◽  
Author(s):  
Derek L. Carbaugh ◽  
Shuntai Zhou ◽  
Wes Sanders ◽  
Nathaniel J. Moorman ◽  
Ronald Swanstrom ◽  
...  

ABSTRACT Recent Zika virus (ZIKV) outbreaks and unexpected clinical manifestations of ZIKV infection have prompted an increase in ZIKV-related research. Here, we identify two strain-specific determinants of ZIKV virulence in mice. We found that strain H/PF/2013 caused 100% lethality in Ifnar1−/− mice, whereas PRVABC59 caused no lethality; both strains caused 100% lethality in Ifnar1−/− Ifngr1−/− double-knockout (DKO) mice. Deep sequencing revealed a high-frequency variant in PRVABC59 not present in H/PF/2013: a G-to-T change at nucleotide 1965 producing a Val-to-Leu substitution at position 330 of the viral envelope (E) protein. We show that the V330 variant is lethal on both virus strain backgrounds, whereas the L330 variant is attenuating only on the PRVABC59 background. These results identify a balanced polymorphism in the E protein that is sufficient to attenuate the PRVABC59 strain but not H/PF/2013. The consensus sequences of H/PF/2013 and PRVABC59 differ by 3 amino acids, but these were not responsible for the difference in virulence between the two strains. H/PF/2013 and PRVABC59 differ by an additional 31 noncoding or silent nucleotide changes. We made a panel of chimeric viruses with identical amino acid sequences but nucleotide sequences derived from H/PF/2013 or PRVABC59. We found that 6 nucleotide differences in the 3′ quarter of the H/PF/2013 genome were sufficient to confer virulence in Ifnar1−/− mice. Altogether, our work identifies a large and previously unreported difference in virulence between two commonly used ZIKV strains, in two widely used mouse models of ZIKV pathogenesis (Ifnar1−/− and Ifnar1−/− Ifngr1−/− DKO mice). IMPORTANCE Contemporary ZIKV strains are closely related and often used interchangeably in laboratory research. Here, we identify two strain-specific determinants of ZIKV virulence that are evident in only Ifnar1−/− mice but not Ifnar1−/− Ifngr1−/− DKO mice. These results identify a balanced polymorphism in the E protein that is sufficient to attenuate the PRVABC59 strain but not H/PF/2013. We further identify a second virulence determinant in the H/PF/2013 strain, which is driven by the viral nucleotide sequence but not the amino acid sequence. Altogether, our work identifies a large and previously unreported difference in virulence between two commonly used ZIKV strains, in two widely used mouse models of ZIKV pathogenesis. Our results highlight that even very closely related virus strains can produce significantly different pathogenic phenotypes in common laboratory models.


Sign in / Sign up

Export Citation Format

Share Document