scholarly journals RNA Interference Strategies for Future Management of Plant Pathogenic Fungi: Prospects and Challenges

Author(s):  
Daniel Gebremichael ◽  
Zeraye Mehari Haile ◽  
Francesca Negrini ◽  
Silvia Sabbadini ◽  
Luca Capriotti ◽  
...  

Plant pathogenic fungi are the largest group of disease-causing agents on crop plants and represent a persistent and significant threat to agriculture worldwide. Conventional approaches based on the use of pesticides raise social concern for the impact on the environment and human health and alternative control methods are urgently needed. The rapid improvement and extensive implementation of RNAi technology for various model and non-model organisms has provided the initial framework to adapt this post-transcriptional gene silencing technology for the management of fungal pathogens. In this review, we describe exogenous RNAi involved in plant pathogenic fungi and discuss small RNA production, formulation, and RNAi delivery methods. We explore some challenges with possible solutions. Furthermore, exogenous RNAi holds great potential for RNAi-mediated plant pathogenic fungal disease control.

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 650
Author(s):  
Daniel Endale Gebremichael ◽  
Zeraye Mehari Haile ◽  
Francesca Negrini ◽  
Silvia Sabbadini ◽  
Luca Capriotti ◽  
...  

Plant pathogenic fungi are the largest group of disease-causing agents on crop plants and represent a persistent and significant threat to agriculture worldwide. Conventional approaches based on the use of pesticides raise social concern for the impact on the environment and human health and alternative control methods are urgently needed. The rapid improvement and extensive implementation of RNA interference (RNAi) technology for various model and non-model organisms has provided the initial framework to adapt this post-transcriptional gene silencing technology for the management of fungal pathogens. Recent studies showed that the exogenous application of double-stranded RNA (dsRNA) molecules on plants targeting fungal growth and virulence-related genes provided disease attenuation of pathogens like Botrytis cinerea, Sclerotinia sclerotiorum and Fusarium graminearum in different hosts. Such results highlight that the exogenous RNAi holds great potential for RNAi-mediated plant pathogenic fungal disease control. Production of dsRNA can be possible by using either in-vitro or in-vivo synthesis. In this review, we describe exogenous RNAi involved in plant pathogenic fungi and discuss dsRNA production, formulation, and RNAi delivery methods. Potential challenges that are faced while developing a RNAi strategy for fungal pathogens, such as off-target and epigenetic effects, with their possible solutions are also discussed.


2020 ◽  
Vol 21 ◽  
pp. 00019
Author(s):  
Marina Maslova ◽  
Ekaterina Grosheva ◽  
Ivan Shamshin ◽  
Anna Kuznetsova ◽  
Alexander Fedorenko

The investigations are made of cherry biological peculiarities and disease excitants composition. The domination of necrotrophic fungi and Pseudomonas syringae van Hall bacteria in pathocenosis is shown. The fact of microbiota associative lesion of plants is established. The antagonist action of isolated bacterium in relation to Cytospora leucostoma (Pers.) Sacc., Alternaria alternata Keissl., Fusarium oxysporum Schlecht., Monillia cinerea Bonord is detected. The character of isolated bacterium metabolites, pathogenic fungi and their association effect on a host-plant is established. The ability of bacterium to lower the activity of phytotoxins secretion in fungi when cultivated together is identified. It has been found that it is the fungal pathogens causing the development of die-back in cherry in investigated gardens, whereas P. syringae bacterium, when in latent state, plays a part of protector and permits to suppress the development of fungal infection. Taking into account the fact that this bacterium is pathogenic, the works of advanced breeding for resistance of the horticultural crops to bacterial blight are recommended.


Biology ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 91 ◽  
Author(s):  
Miryam Pérez-Cañamás ◽  
Elizabeth Hevia ◽  
Carmen Hernández

DNA cytosine methylation is one of the main epigenetic mechanisms in higher eukaryotes and is considered to play a key role in transcriptional gene silencing. In plants, cytosine methylation can occur in all sequence contexts (CG, CHG, and CHH), and its levels are controlled by multiple pathways, including de novo methylation, maintenance methylation, and demethylation. Modulation of DNA methylation represents a potentially robust mechanism to adjust gene expression following exposure to different stresses. However, the potential involvement of epigenetics in plant-virus interactions has been scarcely explored, especially with regard to RNA viruses. Here, we studied the impact of a symptomless viral infection on the epigenetic status of the host genome. We focused our attention on the interaction between Nicotiana benthamiana and Pelargonium line pattern virus (PLPV, family Tombusviridae), and analyzed cytosine methylation in the repetitive genomic element corresponding to ribosomal DNA (rDNA). Through a combination of bisulfite sequencing and RT-qPCR, we obtained data showing that PLPV infection gives rise to a reduction in methylation at CG sites of the rDNA promoter. Such a reduction correlated with an increase and decrease, respectively, in the expression levels of some key demethylases and of MET1, the DNA methyltransferase responsible for the maintenance of CG methylation. Hypomethylation of rDNA promoter was associated with a five-fold augmentation of rRNA precursor levels. The PLPV protein p37, reported as a suppressor of post-transcriptional gene silencing, did not lead to the same effects when expressed alone and, thus, it is unlikely to act as suppressor of transcriptional gene silencing. Collectively, the results suggest that PLPV infection as a whole is able to modulate host transcriptional activity through changes in the cytosine methylation pattern arising from misregulation of methyltransferases/demethylases balance.


2021 ◽  
Author(s):  
Wittaya Chaiwangyen

MicroRNAs (miRNAs) are a class of non-coding endogenous RNA molecules that are involved in post-transcriptional gene silencing via binding to their target messenger RNA, leading to mRNA degradation or translational repression. MicroRNAs can be modulated by several factors including hormones, transcription factors, and dietary compounds. These biologically active compounds have positive impact on the progression of human pathology including non-communicable diseases, which indicating that administration of diet may have potential as therapeutic agents in modulating the risk of chronic diseases. Interestingly, evidence emerging in recent years suggests that dietary miRNAs can be absorbed in human circulation, modulated human gene expression and biological functions. The exploitation of the miRNA functioning within different origins, cellular miRNAs and dietary miRNAs will help us to understand the molecular machinery as well as the regulatory mechanisms involved in fundamentally important biological processes. Therefore, this knowledge may be applied of natural bioactive compounds in preventive or therapeutic approaches.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 831
Author(s):  
Jane Usher

The impact of fungi on human and plant health is an ever-increasing issue. Recent studies have estimated that human fungal infections result in an excess of one million deaths per year and plant fungal infections resulting in the loss of crop yields worth approximately 200 million per annum. Sexual reproduction in these economically important fungi has evolved in response to the environmental stresses encountered by the pathogens as a method to target DNA damage. Meiosis is integral to this process, through increasing diversity through recombination. Mating and meiosis have been extensively studied in the model yeast Saccharomyces cerevisiae, highlighting that these mechanisms have diverged even between apparently closely related species. To further examine this, this review will inspect these mechanisms in emerging important fungal pathogens, such as Candida, Aspergillus, and Cryptococcus. It shows that both sexual and asexual reproduction in these fungi demonstrate a high degree of plasticity.


2004 ◽  
Vol 26 (5) ◽  
pp. 20-23
Author(s):  
Junlong Zhang

RNA interference (RNAi), which refers to RNA-induced transcriptional gene silencing, is a natural phenomenon that exists widely in living organisms. Recent advances in RNAi research indicate that RNAi technology is a powerful tool in studying gene function and has a great potential in gene therapy. Although many methods, including viral and non-viral vectors, have been used to deliver small interference RNA molecules into cells and animals, development of better delivery methods is still crucial for the application of RNAi technology in both basic research and gene therapy.


mSystems ◽  
2021 ◽  
Author(s):  
Vittorio Tracanna ◽  
Adam Ossowicki ◽  
Marloes L. C. Petrus ◽  
Sam Overduin ◽  
Barbara R. Terlouw ◽  
...  

Soil-borne plant-pathogenic fungi continue to be a major threat to agriculture and horticulture. The genus Fusarium in particular is one of the most devastating groups of soilborne fungal pathogens for a wide range of crops.


2016 ◽  
Vol 14 (1) ◽  
pp. 157-168
Author(s):  
Nguyễn Bảo Quốc ◽  
Nguyễn Ngọc Bảo Châu

RNA silencing, the phenomenon known as RNA interference (RNAi), co-suppression or post-transcriptional gene silencing (PTGS) and quelling, has become more popular in studies of its intrinsic roles and applications in many organisms or of gene functions in a whole genomic scale. Since the discovery of RNA silencing more two decades ago, this powerful technology has demonstrated its applicability in developing RNAi-based drugs for various diseases in human. RNA silencing is also of interest in basic and applied studies in agriculture, especially in plant protection to create crop varieties that are resistant to biotic and abiotic stresses. This review provides an overview of RNA silencing studies in filamentous fungi, the molecular mechanisms of RNA silencing in fungi, and also describes potential applications in plant protection potentially important for the agricultural industry and for global food security.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 881
Author(s):  
Abdulaziz Bashir Kutawa ◽  
Khairulmazmi Ahmad ◽  
Asgar Ali ◽  
Mohd Zobir Hussein ◽  
Mohd Aswad Abdul Wahab ◽  
...  

Approximately 15–18% of crops losses occur as a result of animal pests, while weeds and microbial diseases cause 34 and 16% losses, respectively. Fungal pathogens cause about 70–80% losses in yield. The present strategies for plant disease control depend transcendently on agrochemicals that cause negative effects on the environment and humans. Nanotechnology can help by reducing the negative impact of the fungicides, such as enhancing the solubility of low water-soluble fungicides, increasing the shelf-life, and reducing toxicity, in a sustainable and eco-friendly manner. Despite many advantages of the utilization of nanoparticles, very few nanoparticle-based products have so far been produced in commercial quantities for agricultural purposes. The shortage of commercial uses may be associated with many factors, for example, a lack of pest crop host systems usage and the insufficient number of field trials. In some areas, nanotechnology has been advanced, and the best way to be in touch with the advances in nanotechnology in agriculture is to understand the major aspect of the research and to address the scientific gaps in order to facilitate the development which can provide a rationale of different nanoproducts in commercial quantity. In this review, we, therefore, described the properties and synthesis of nanoparticles, their utilization for plant pathogenic fungal disease control (either in the form of (a) nanoparticles alone, that act as a protectant or (b) in the form of a nanocarrier for different fungicides), nano-formulations of agro-nanofungicides, Zataria multiflora, and ginger essential oils to control plant pathogenic fungi, as well as the biosafety and limitations of the nanoparticles applications.


1999 ◽  
Vol 65 (3) ◽  
pp. 1320-1324 ◽  
Author(s):  
Zhi-Yuan Chen ◽  
Robert L. Brown ◽  
Alan R. Lax ◽  
Thomas E. Cleveland ◽  
John S. Russin

ABSTRACT The cDNA of a 14-kDa trypsin inhibitor (TI) from corn was subcloned into an Escherichia coli overexpression vector. The overexpressed TI was purified based on its insolubility in urea and then refolded into the active form in vitro. This recombinant TI inhibited both conidium germination and hyphal growth of all nine plant pathogenic fungi studied, including Aspergillus flavus,Aspergillus parasiticus, and Fusarium moniliforme. The calculated 50% inhibitory concentration of TI for conidium germination ranged from 70 to more than 300 μg/ml, and that for fungal growth ranged from 33 to 124 μg/ml depending on the fungal species. It also inhibited A. flavus and F. moniliforme simultaneously when they were tested together. The results suggest that the corn 14-kDa TI may function in host resistance against a variety of fungal pathogens of crops.


Sign in / Sign up

Export Citation Format

Share Document