scholarly journals Macroalgae Microbiomes May Hold the Key to Reducing Methane Emissions From Ruminant Livestock

Author(s):  
Janja Ceh

Ruminant mammals extract nutrients from plant-based food through fermentation in the rumen; fiber and starch are pre-digested by microorganisms and methane is produced as a by-product, which released into the atmosphere acts as a potent greenhouse gas. In an effort to reduce enteric methanogenesis, dietary additives for ruminants have been investigated, and marine macroalgae have proven particularly promising, e.g., the inclusion of 0.2% dry matter of the red alga A. taxiformis into cow feed decreased in vivo methane production by up to 98%. Thus, if globally applied, the addition of algae in ruminant diets could revolutionize the management of greenhouse gas emissions across the livestock sector. However, the ozone-depleting nature of halogen compounds produced in Asparagopsis sp. and the reported adverse health impacts on humans, along with impracticability issues and the difficulty to produce, commercialize and distribute algae widely, has sown some doubt on the feasibility of using macroalgae as methane mitigation instruments. To circumvent such obstacles, and taking into account the paradigm that eukaryotic hosts cannot be understood without considering interactions with their associated microbiome, the exploration of marine algae associated microorganisms is anticipated. Following the notion that in the close and intimate relationships between algae-hosts and their microbiota the origin of chemical response mechanisms is often unclear, and that compounds initially assigned to algae have previously been shown to stem from host-associated microbes, it is not unreasonable to think that these may be involved in the antimethanogenic effects of marine algae in the rumen. Once identified, such microorganisms could lead to antimethanogenic feed additives, and reduce enteric methanogenesis from livestock ruminants substantially. This review is three-fold: it provides a brief, historic overview of macroalgae as feed supplements for ruminants, sums up the difficulties related to using whole-macroalgae as large-scale antimethanogenic feed additives, and describes the macroalga microbiome, including its potential to serve as an antimethanogen for enteric fermentation.

Author(s):  
Cécile Martin ◽  
◽  
Vincent Niderkorn ◽  
Gaëlle Maxin ◽  
Jessie Guyader ◽  
...  

This chapter focuses on the opportunity to use plant bioactive compounds in ruminant diets for their potential to mitigate greenhouse gas emissions, particularly enteric methane. Nitrous oxide emissions related to urinary nitrogen waste are addressed when information is available. The main families considered are plant lipids and plant secondary compounds (tannins, saponins, halogenated compounds and essential oils). The effects of these compounds in vivo, their mechanisms of action, and their potential adoption on farms are discussed, and future trends in this research area are highlighted.


2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Ahmedin Abdurehman Musa

Understanding the interaction of livestock production and climate change is currently the main issue in global warming. This paper reviews the contribution of livestock production in greenhouse gas emission and its mitigation strategies. The potential contribution of individual large ruminants are 200-500 litters of methane per day while small ruminants produces 20-40 litters of methane per day. The major greenhouse gas related to livestock production are methane and nitrous oxide which contribute approximately about 14.5% global GHG emissions. Limiting emissions from livestock, without compromising food security, is an important limit greenhouse gas emissions. The main choices for reducing greenhouse gas emission in livestock production are more related to improving animal production. Mitigating emission of CH4 by means of improved management of biogas and manure, reducing CH4 emission from enteric fermentation through improved efficiency and diet, husbandry as well as genetic management are some of strategies used in mitigating enteric emission of methane from livestock. The other one is mitigating emission of nitrous oxide through more efficient use of nitrous fertilizer, proper manure management and by using different feed additives.


Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 942
Author(s):  
Rafael Jiménez-Ocampo ◽  
Sara Valencia-Salazar ◽  
Carmen Elisa Pinzón-Díaz ◽  
Esperanza Herrera-Torres ◽  
Carlos Fernando Aguilar-Pérez ◽  
...  

Livestock production is a main source of anthropogenic greenhouse gases (GHG). The main gases are CH4 with a global warming potential (GWP) 25 times and nitrous oxide (N2O) with a GWP 298 times, that of carbon dioxide (CO2) arising from enteric fermentation or from manure management, respectively. In fact, CH4 is the second most important GHG emitted globally. This current scenario has increased the concerns about global warming and encouraged the development of intensive research on different natural compounds to be used as feed additives in ruminant rations and modify the rumen ecosystem, fermentation pattern, and mitigate enteric CH4. The compounds most studied are the secondary metabolites of plants, which include a vast array of chemical substances like polyphenols and saponins that are present in plant tissues of different species, but the results are not consistent, and the extraction cost has constrained their utilization in practical animal feeding. Other new compounds of interest include polysaccharide biopolymers such as chitosan, mainly obtained as a marine co-product. As with other compounds, the effect of chitosan on the rumen microbial population depends on the source, purity, dose, process of extraction, and storage. In addition, it is important to identify compounds without adverse effects on rumen fermentation. The present review is aimed at providing information about chitosan for dietary manipulation to be considered for future studies to mitigate enteric methane and reduce the environmental impact of GHGs arising from livestock production systems. Chitosan is a promising agent with methane mitigating effects, but further research is required with in vivo models to establish effective daily doses without any detrimental effect to the animal and consider its addition in practical rations as well as the economic cost of methane mitigation.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 200
Author(s):  
Natalya N. Besednova ◽  
Boris G. Andryukov ◽  
Tatyana S. Zaporozhets ◽  
Sergey P. Kryzhanovsky ◽  
Ludmila N. Fedyanina ◽  
...  

The disease-preventive and medicinal properties of plant polyphenolic compounds have long been known. As active ingredients, they are used to prevent and treat many noncommunicable diseases. In recent decades, marine macroalgae have attracted the attention of biotechnologists and pharmacologists as a promising and almost inexhaustible source of polyphenols. This heterogeneous group of compounds contains many biopolymers with unique structure and biological properties that exhibit high anti-infective activity. In the present review, the authors focus on the antiviral potential of polyphenolic compounds (phlorotannins) from marine algae and consider the mechanisms of their action as well as other biological properties of these compounds that have effects on the progress and outcome of viral infections. Effective nutraceuticals, to be potentially developed on the basis of algal polyphenols, can also be used in the complex therapy of viral diseases. It is necessary to extend in vivo studies on laboratory animals, which subsequently will allow proceeding to clinical tests. Polyphenolic compounds have a great potential as active ingredients to be used for the creation of new antiviral pharmaceutical substances.


1969 ◽  
Vol 22 (03) ◽  
pp. 577-583 ◽  
Author(s):  
M.M.P Paulssen ◽  
A.C.M.G.B Wouterlood ◽  
H.L.M.A Scheffers

SummaryFactor VIII can be isolated from plasma proteins, including fibrinogen by chromatography on agarose. The best results were obtained with Sepharose 6B. Large scale preparation is also possible when cryoprecipitate is separated by chromatography. In most fractions containing factor VIII a turbidity is observed which may be due to the presence of chylomicrons.The purified factor VIII was active in vivo as well as in vitro.


1997 ◽  
Vol 78 (04) ◽  
pp. 1202-1208 ◽  
Author(s):  
Marianne Kjalke ◽  
Julie A Oliver ◽  
Dougald M Monroe ◽  
Maureane Hoffman ◽  
Mirella Ezban ◽  
...  

SummaryActive site-inactivated factor VIIa has potential as an antithrombotic agent. The effects of D-Phe-L-Phe-L-Arg-chloromethyl ketone-treated factor VIla (FFR-FVIIa) were evaluated in a cell-based system mimicking in vivo initiation of coagulation. FFR-FVIIa inhibited platelet activation (as measured by expression of P-selectin) and subsequent large-scale thrombin generation in a dose-dependent manner with IC50 values of 1.4 ± 0.8 nM (n = 8) and 0.9 ± 0.7 nM (n = 7), respectively. Kd for factor VIIa binding to monocytes ki for FFR-FVIIa competing with factor VIIa were similar (11.4 ± 0.8 pM and 10.6 ± 1.1 pM, respectively), showing that FFR-FVIIa binds to tissue factor in the tenase complex with the same affinity as factor VIIa. Using platelets from volunteers before and after ingestion of aspirin (1.3 g), there were no significant differences in the IC50 values of FFR-FVIIa [after aspirin ingestion, the IC50 values were 1.7 ± 0.9 nM (n = 8) for P-selectin expression, p = 0.37, and 1.4 ± 1.3 nM (n = 7) for thrombin generation, p = 0.38]. This shows that aspirin treatment of platelets does not influence the inhibition of tissue factor-initiated coagulation by FFR-FVIIa, probably because thrombin activation of platelets is not entirely dependent upon expression of thromboxane A2.


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2020 ◽  
Vol 26 ◽  
Author(s):  
Luíza Dantas-Pereira ◽  
Edézio F. Cunha-Junior ◽  
Valter V. Andrade-Neto ◽  
John F. Bower ◽  
Guilherme A. M. Jardim ◽  
...  

: Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo are essential for the development of a novel, specific and safe derivative, minimizing adverse effects.


Author(s):  
Stefano Vassanelli

Establishing direct communication with the brain through physical interfaces is a fundamental strategy to investigate brain function. Starting with the patch-clamp technique in the seventies, neuroscience has moved from detailed characterization of ionic channels to the analysis of single neurons and, more recently, microcircuits in brain neuronal networks. Development of new biohybrid probes with electrodes for recording and stimulating neurons in the living animal is a natural consequence of this trend. The recent introduction of optogenetic stimulation and advanced high-resolution large-scale electrical recording approaches demonstrates this need. Brain implants for real-time neurophysiology are also opening new avenues for neuroprosthetics to restore brain function after injury or in neurological disorders. This chapter provides an overview on existing and emergent neurophysiology technologies with particular focus on those intended to interface neuronal microcircuits in vivo. Chemical, electrical, and optogenetic-based interfaces are presented, with an analysis of advantages and disadvantages of the different technical approaches.


Sign in / Sign up

Export Citation Format

Share Document