scholarly journals The effect of housing volume of a converting loudspeaker on the output electric power of a loudspeaker-based acoustic energy harvester

2020 ◽  
Vol 4 (2) ◽  
pp. 59
Author(s):  
Ikhsan Setiawan

Acoustic energy harvester is a device that converts sound or acoustic energy into electrical energy. Generally, the main components of this instrument are an acoustic transducer and an acoustic resonator. In this study, the transducer used was a 4-inch woofer loudspeaker, without acoustic resonator but equipped with a cylindrical housing with a fixed cross-sectional area and a length that can be varied from 6 cm until 25 cm by using a piston. Experimental results for various housing volumes showed a similar pattern of the dependence of the generated electric power on the incoming sound frequencies. In addition, it was found that (within the range of the volume variations) the output electric power increased significantly when the volume of the housing was increased. The highest root-mean-square (rms) electric power obtained was 1.72 mW resulting from sound with a sound pressure level (SPL) of 105 dB and a frequency of 84 Hz and by using a length of the housing cylinder of 25 cm (housing volume of 3243.7 cm<sup>3</sup>)

2019 ◽  
Vol 3 (2) ◽  
pp. 50
Author(s):  
Hedwigis Harindra ◽  
Agung Bambang Setio Utomo ◽  
Ikhsan Setiawan

<span>Acoustic energy harvesting is one o</span><span lang="EN-US">f</span><span> many ways to harness </span><span lang="EN-US">acoustic </span><span>noises as wasted energy into use</span><span lang="EN-US">f</span><span>ul </span><span lang="EN-US">electical </span><span>energy using an acoustic </span><span>energy harvester. </span><span>Acoustic </span><span>energy harvester t</span><span lang="EN-US">h</span><span>at tested by Dimastya (2018) </span><span lang="EN-US">which is consisted of loudspeake</span><span>r </span><span lang="EN-US">and Helmholtz resonator, </span><span>produced two-peak spectrum. It is </span><span lang="EN-US">suspected</span><span> that the </span><span lang="EN-US">f</span><span>irst peak </span><span lang="EN-US">is due t</span><span>o </span><span lang="EN-US">Helmholtz</span><span> resonator resonance and the second peak </span><span lang="EN-US">comes</span><span lang="EN-US">from the resonance of the conversion </span><span>loudspeaker. </span><span lang="EN-US">This research is to experimentally confirm the guess of the origin of the first peak. The experiments are performed by adding silencer materials on the resonator inner wall which are expected to be able to reduce the height of first peak and to know </span><span>how </span><span lang="EN-US">they</span><span> a</span><span lang="EN-US">ff</span><span>ect t</span><span>he output electric power spectrum o</span><span lang="EN-US">f</span><span> t</span><span>he acoustic energy harvester. </span><span lang="EN-US">Three different silencer materials are used, those are</span><span> glasswool, acoustic </span><span lang="EN-US">f</span><span>oam, and styro</span><span lang="EN-US">f</span><span>oam</span><span lang="EN-US">,</span><span> with</span><span lang="EN-US"> the same thickness of</span><span> 12 cm. </span><span lang="EN-US">The r</span><span>esult</span><span lang="EN-US">s</span><span> show that glasswool absorb</span><span lang="EN-US">s</span><span> sound more e</span><span lang="EN-US">ff</span><span>ectively than acostic </span><span lang="EN-US">f</span><span>oam and styro</span><span lang="EN-US">f</span><span>oam. The use o</span><span lang="EN-US">f</span><span> glasswool, acoustic </span><span lang="EN-US">f</span><span>oam, and styro</span><span lang="EN-US">f</span><span>oam with 12 cm thickness lowered the </span><span lang="EN-US">f</span><span>irst peak </span><span lang="EN-US">by</span><span> 90% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,5 mW), 82% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,7 mW), and 82% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,7 mW), respectively. </span><span lang="EN-US">Based on these results, it is concluded that the guess of the origin of the first peak is confirmed.</span>


Author(s):  
Yuanita Fara Abdillah ◽  
Ikhsan Setiawan ◽  
Agung Bambang S Utomo

<p class="AbstractEnglish"><strong>Abstract: </strong>Acoustic energy (sound) that is wasted in environment has potential to be alternative energy to produce electrical energy. This paper presents an experimental study of the effect of Helmholtz resonator neck diameter on the output electric power of an acoustic energy harvester. The cavity of the resonators is a cube-shaped with size of 30 cm ´ 30 cm ´ 30 cm made of acrylic. The resonator neck is cylindrical and has 8 cm length with four diameter variations of 5,2 cm, 6,9 cm, 8,2 cm, and 10,4 cm. A 6-inches subwoofer loudspeaker is used as acoustic transducers that converts sound into electric current. The experiment is performed by giving sound with SPL of 90 dB in the frequency range of (20-150) Hz. The output rms voltages from the loudspeaker are measured at a 5.0 ohm load resistor. It is found that there are always two peaks in the frequency spectrum that provide maximum electric power, namely at 27 Hz and 55 Hz. These peak frequencies do not depend on the neck diameter. On the other hand, the larger the neck diameter, the higher the generated electrical power. The highest rms electric power produced are 3.03 mW and 2.25 mW at the first and second peaks, respectively.</p><p class="AbstractEnglish"><strong>Abstrak: </strong>Energi akustik (bunyi) yang terbuang di lingkungan memiliki potensi menjadi salah satu energi alternatif untuk menghasilkan energi listrik. Makalah ini memaparkan tentang studi eksperimental pengaruh diameter leher resonator Helmholtz pada alat pemanen energi akustik terhadap daya listrik yang dihasilkan. Rongga resonator Helmholtz berbentuk kubus berukuran 30 cm ´ 30 cm ´ 30 cm terbuat dari akrilik. Leher resonator berbentuk silinder sepanjang 8 cm dengan empat variasi diameter yaitu 5,2 cm, 6,9 cm, 8,2 cm, dan 10,4 cm. Loudspeaker jenis subwoofer dengan diameter nominal 6 inci dipasang disisi belakang rongga resonator digunakan sebagai transduser akustik yang mengubah bunyi menjadi arus listrik. Eksperimen dilakukan dengan memberikan gelombang bunyi dengan SPL (sound pressure level) 90 dB dalam rentang frekuensi (20 - 150) Hz dan mengukur tegangan listrik rms keluaran dari loudspeaker pada resistor beban 5,0 ohm. Diperoleh bahwa selalu terdapat dua puncak spektrum frekuensi dengan daya listrik maksimum, yaitu pada 27 Hz dan 55 Hz. Frekuensi-frekuensi puncak ini tidak bergantung pada diameter leher resonator. Di sisi lain, ditemukan bahwa diameter leher yang semakin besar menghasilkan daya listrik yang semakin besar. Daya listrik rms terbesar yang dihasilkan (pada diameter 10,4 cm) adalah 3,03 mW dan 2,25 mW masing-masing pada puncak pertama dan puncak kedua.</p>


2018 ◽  
Vol 37 (4) ◽  
pp. 1015-1029 ◽  
Author(s):  
Ming Yuan ◽  
Ziping Cao ◽  
Jun Luo ◽  
Roger Ohayon

In this study, a multifunctional acoustic metastructure is proposed to achieve both effective low-frequency sound isolation and acoustic energy harvesting. A metallic substrate with proof mass is adopted to generate the local resonant phenomenon for the purpose of overcoming the drawbacks of the previous rubber film-based acoustic metastructure; the latter usually requires an elaborate tension process. Numerical simulations show that the proposed structure exhibits excellent noise isolation performance in the low-frequency band. Meanwhile, the incident sound energy can be converted into electrical energy with the help of an added piezoelectric patch. Numerical simulation results indicate that the harvested energy can reach the mW level. The parameters’ influence on the metastructure’s vibro-acoustic and energy harvesting performance are discussed in detail. An optimized configuration is selected and used for experimental study. It is demonstrated that 0.21 mW electrical power at 155 Hz can be harvested by the proposed metastructure under 114 dB sound pressure excitation.


Author(s):  
O. Aldraihem ◽  
A. Baz

The onset of self-excited oscillations is developed theoretically for a traveling wave thermo-acoustic-piezoelectric (TAP) energy harvester. The harvester is intended for converting thermal energy, such as solar or waste heat energy, directly into electrical energy without the need for any moving components. The thermal energy is utilized to generate a steep temperature gradient along a porous stack. At a specific threshold of the temperature gradient, self-sustained acoustic waves are generated inside an acoustic resonator. The resulting pressure fluctuations excite a piezoelectric diaphragm, placed at the end of the resonator, which converts the acoustic energy directly into electrical energy. The pressure pulsations are amplified by using an acoustic feedback loop which introduces appropriate phasing that make the pulsations take the form of traveling waves. Such traveling waves render the harvester to be inherently reversible and thus highly efficient. The behavior of this class of harvesters is modeled using the lumped-parameter approach. The developed model is a multi-field model which combines the descriptions of the acoustic resonator, feedback loop, and the stack with the characteristics of the piezoelectric diaphragm. A new method is proposed here to analyze the onset of self-sustained oscillations of the traveling wave engine using the classical control theory. The predictions of the developed models are validated against published results. Such models present invaluable tools for the design of efficient thermo-acoustic-piezoelectric (TAP) energy harvesters and engines.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2876
Author(s):  
Hailu Yang ◽  
Ya Wei ◽  
Weidong Zhang ◽  
Yibo Ai ◽  
Zhoujing Ye ◽  
...  

Road power generation technology is of significance for constructing smart roads. With a high electromechanical conversion rate and high bearing capacity, the stack piezoelectric transducer is one of the most used structures in road energy harvesting to convert mechanical energy into electrical energy. To further improve the energy generation efficiency of this type of piezoelectric energy harvester (PEH), this study theoretically and experimentally investigated the influences of connection mode, number of stack layers, ratio of height to cross-sectional area and number of units on the power generation performance. Two types of PEHs were designed and verified using a laboratory accelerated pavement testing system. The findings of this study can guide the structural optimization of PEHs to meet different purposes of sensing or energy harvesting.


2013 ◽  
Vol 300-301 ◽  
pp. 912-915
Author(s):  
Yusuke Uchida ◽  
Satoshi Iizumi ◽  
Syungo Tomioka ◽  
Kyohei Tsujimoto ◽  
Kazuki Tomii ◽  
...  

This paper presents the power generation performances of an array of three microelectromechanical system (MEMS) acoustic energy harvesters equiped with lead–zirconate–titanate (PZT) capacitors. The PZT acoustic energy harvesters had a diaphragm with a diameter of 2 mm consisting of Al (0.1 μm) / PZT (1 μm) / Pt (0.1 μm) / Ti (0.1 μm) / SiO2 (1.5 μm), and the diaphragm vibrations were excited by sound pressure. The arrayed peripheral energy harvester generated a maximum power of 2.26 × 10-10 W at a sound pressure level (SPL) of 100 dB at 5 kHz. The output power of three arraying devices was about 3 times larger than that of the single devices.


2013 ◽  
Vol 683 ◽  
pp. 933-936
Author(s):  
Kazuki Tomii ◽  
Shungo Tomioka ◽  
Satoshi Iizumi ◽  
Kyohei Tsujimoto ◽  
Yusuke Uchida ◽  
...  

This paper reports on the power generation performances of a PZT microelectromechanical system (MEMS) acoustic energy harvester having dual top electrodes to utilize the different polarizations of charges on the surface of a vibrating PZT diaphragm at first resonance. The PZT acoustic energy harvester was fabricated on a silicon-on-insulator (SOI) substrate, and had a diaphragm with a diameter of 2 mm consisting of Al (0.1 μm)/PZT (1 μm)/Pt (0.1 μm)/Ti (0.1 μm)/Si (1.0μm)/ (0.5 μm), and the diaphragm vibrations were excited by sound pressure. The top Al electrodes independently cover the peripheral surface and the central surface of the PZT diaphragm. The peripheral energy harvester generated a power of W, and the central energy harvester generated a power of W at an SPL of 100 dB at 9.95 kHz.


2016 ◽  
Vol 16 (05) ◽  
pp. 1650073 ◽  
Author(s):  
P. R. NWAGOUM TUWA ◽  
P. WOAFO

This work considers a theoretical study for the conversion of the pulsating arterial pressure into electrical energy using piezoelectric layer on a micro-plate with axial load. The mathematical modeling of the device is carried out. Analytical and numerical methods are used to analyze the dynamical behavior of the plate and the variation of the electric power output. Pulsatile voltage is obtained with electric power of the order of 3.07[Formula: see text]nW for a plate of [Formula: see text][Formula: see text]cm3. The power increases with the pressure frequency and attains its maximal value for a load resistance of about 5[Formula: see text]k[Formula: see text].


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
O. Aldraihem ◽  
A. Baz

The onset of self-excited oscillations is developed theoretically for a traveling wave thermo-acoustic-piezoelectric (TAP) energy harvester. The harvester is intended for converting thermal energy, such as solar or waste heat energy, directly into electrical energy without the need for any moving components. The thermal energy is utilized to generate a steep temperature gradient along a porous regenerator. At a specific threshold of the temperature gradient, self-sustained acoustic waves are generated inside an acoustic resonator. The resulting pressure fluctuations excite a piezoelectric diaphragm, placed at the end of the resonator, which converts the acoustic energy directly into electrical energy. The pressure pulsations are amplified by using an acoustic feedback loop which introduces appropriate phasing that make the pulsations take the form of traveling waves. Such traveling waves render the engine to be inherently reversible and thus highly efficient. The behavior of this class of harvesters is modeled using the lumped-parameter approach. The developed model is a multifield model which combines the descriptions of the acoustic resonator, feedback loop, and the regenerator with the characteristics of the piezoelectric diaphragm. A new method is proposed here to analyze the onset of self-sustained oscillations of the traveling wave engine using the classical control theory. The predictions of the developed models are validated against published results. Such models present invaluable tools for the design of efficient TAP energy harvesters and engines.


2020 ◽  
Vol 63 (6) ◽  
pp. 2016-2026
Author(s):  
Tamara R. Almeida ◽  
Clayton H. Rocha ◽  
Camila M. Rabelo ◽  
Raquel F. Gomes ◽  
Ivone F. Neves-Lobo ◽  
...  

Purpose The aims of this study were to characterize hearing symptoms, habits, and sound pressure levels (SPLs) of personal audio system (PAS) used by young adults; estimate the risk of developing hearing loss and assess whether instructions given to users led to behavioral changes; and propose recommendations for PAS users. Method A cross-sectional study was performed in 50 subjects with normal hearing. Procedures included questionnaire and measurement of PAS SPLs (real ear and manikin) through the users' own headphones and devices while they listened to four songs. After 1 year, 30 subjects answered questions about their usage habits. For the statistical analysis, one-way analysis of variance, Tukey's post hoc test, Lin and Spearman coefficients, the chi-square test, and logistic regression were used. Results Most subjects listened to music every day, usually in noisy environments. Sixty percent of the subjects reported hearing symptoms after using a PAS. Substantial variability in the equivalent music listening level (Leq) was noted ( M = 84.7 dBA; min = 65.1 dBA, max = 97.5 dBA). A significant difference was found only in the 4-kHz band when comparing the real-ear and manikin techniques. Based on the Leq, 38% of the individuals exceeded the maximum daily time allowance. Comparison of the subjects according to the maximum allowed daily exposure time revealed a higher number of hearing complaints from people with greater exposure. After 1 year, 43% of the subjects reduced their usage time, and 70% reduced the volume. A volume not exceeding 80% was recommended, and at this volume, the maximum usage time should be 160 min. Conclusions The habit of listening to music at high intensities on a daily basis seems to cause hearing symptoms, even in individuals with normal hearing. The real-ear and manikin techniques produced similar results. Providing instructions on this topic combined with measuring PAS SPLs may be an appropriate strategy for raising the awareness of people who are at risk. Supplemental Material https://doi.org/10.23641/asha.12431435


Sign in / Sign up

Export Citation Format

Share Document