New Daylight Panel Design Using Ultra-Precision Machining

2009 ◽  
Vol 3 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Jian-Shian Lin ◽  
◽  
Wei-Lun Tai ◽  
Chieh-Lung Lai ◽  
Yoshimi Takeuchi ◽  
...  

The daylight panel design we introduce increases inner wall illumination by 20% and improves daytime lighting efficiency. The three panel structures we simulated and manufactured are plain, triangular, and rhombic. Simulation and optical measurement results show that the rhombic structured panel uses daylight most efficiently. Our microstructured daylight panel increases building illumination and uniformity, reduces lighting-fixture glare, and saves energy, making it environment-friendly.

2014 ◽  
Vol 907 ◽  
pp. 277-289 ◽  
Author(s):  
Eckart Uhlmann ◽  
Gerhard Häusler ◽  
Christian Röttinger ◽  
Evelyn Olesch ◽  
Christian Faber ◽  
...  

In this paper, current results of a research project combining ultra precision machining and optical measurement are presented. The goal is to improve the quality of specular freeform surfaces manufactured by ultra precision slow slide servo turning by running appropriate correction cycles on the basis of machine integrated measurements. These measurements are conducted using the principle of Phase Measuring Deflectometry (PMD) in order to optically acquire full-field 3D-height data. For this purpose, a special setup the so called Mini PMD that can be operated within the limited installation space of an ultra precision machine tool has been designed and implemented. Results of machine integrated measurements of a specular non-rotational symmetrical surface are presented. Furthermore, using Mini PMD and a rotationally symmetric test surface, a complete correction cycle is demonstrated without the necessity of taking the workpiece off the machine for measurement.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 929
Author(s):  
Xudong Yang ◽  
Zexiao Li ◽  
Linlin Zhu ◽  
Yuchu Dong ◽  
Lei Liu ◽  
...  

Taper-cutting experiments are important means of exploring the nano-cutting mechanisms of hard and brittle materials. Under current cutting conditions, the brittle-ductile transition depth (BDTD) of a material can be obtained through a taper-cutting experiment. However, taper-cutting experiments mostly rely on ultra-precision machining tools, which have a low efficiency and high cost, and it is thus difficult to realize in situ measurements. For taper-cut surfaces, three-dimensional microscopy and two-dimensional image calculation methods are generally used to obtain the BDTDs of materials, which have a great degree of subjectivity, leading to low accuracy. In this paper, an integrated system-processing platform is designed and established in order to realize the processing, measurement, and evaluation of taper-cutting experiments on hard and brittle materials. A spectral confocal sensor is introduced to assist in the assembly and adjustment of the workpiece. This system can directly perform taper-cutting experiments rather than using ultra-precision machining tools, and a small white light interference sensor is integrated for in situ measurement of the three-dimensional topography of the cutting surface. A method for the calculation of BDTD is proposed in order to accurately obtain the BDTDs of materials based on three-dimensional data that are supplemented by two-dimensional images. The results show that the cutting effects of the integrated platform on taper cutting have a strong agreement with the effects of ultra-precision machining tools, thus proving the stability and reliability of the integrated platform. The two-dimensional image measurement results show that the proposed measurement method is accurate and feasible. Finally, microstructure arrays were fabricated on the integrated platform as a typical case of a high-precision application.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 755
Author(s):  
Chen-Yang Zhao ◽  
Chi-Fai Cheung ◽  
Wen-Peng Fu

In this paper, an investigation of cutting strategy is presented for the optimization of machining parameters in the ultra-precision machining of polar microstructures, which are used for optical precision measurement. The critical machining parameters affecting the surface generation and surface quality in the machining of polar microstructures are studied. Hence, the critical ranges of machining parameters have been determined through a series of cutting simulations, as well as cutting experiments. First of all, the influence of field of view (FOV) is investigated. After that, theoretical modeling of polar microstructures is built to generate the simulated surface topography of polar microstructures. A feature point detection algorithm is built for image processing of polar microstructures. Hence, an experimental investigation of the influence of cutting tool geometry, depth of cut, and groove spacing of polar microstructures was conducted. There are transition points from which the patterns of surface generation of polar microstructures vary with the machining parameters. The optimization of machining parameters and determination of the optimized cutting strategy are undertaken in the ultra-precision machining of polar microstructures.


2006 ◽  
Vol 532-533 ◽  
pp. 109-112
Author(s):  
Xun Lv ◽  
Ju Long Yuan ◽  
Dong Hui Wen ◽  
Qian Fa Deng ◽  
Fei Yan Lou

The high precision balls are requested in national defense, astronautics and high-tech commercial domain urgently. Conventional precision machining methods are sensitive to uniformity of abrasives and machining environment. After precision machining, there are easily to produce thick damaged layer on the ball surface because of machining stress and chemical conversion. On the basis of the floating polishing mechanism, a new scatheless ultra-precision polishing method of ball surface can solve the problems of abrasives uniformity effectively and damaged layer. In order to ensure that the new polishing method polishes ball surface equally, the appropriate angular velocities of the ball should be selected. This paper sets up the mathematical model about the motion of ball. By analyzing and simulating the relationship of the angular velocities, the best processing parameters are acquired.


CIRP Annals ◽  
2011 ◽  
Vol 60 (1) ◽  
pp. 141-144 ◽  
Author(s):  
S. Min ◽  
J. Lidde ◽  
N. Raue ◽  
D. Dornfeld

Sign in / Sign up

Export Citation Format

Share Document