Deposition Conditions for Laser Formation Processes with Filler Wire

2016 ◽  
Vol 10 (6) ◽  
pp. 899-908 ◽  
Author(s):  
Naoki Seto ◽  
◽  
Hiroshi Sato ◽  

Recently, studies on three-dimensional (3D) formation technology, which is capable of forming components directly, have become increasingly popular as a part of additive manufacturing technologies. However, a very limited amount of information has been published about its processing conditions or settings. In this study, we have prototyped a wire-feeding type 3D laser deposition equipment to publish information about adjusting the deposition conditions and examining the deposition characteristics, which can be used as a reference by engineers who carry out 3D formations. We hope that this study can contribute significantly to the progress in additive manufacturing technologies.Using the proposed equipment, we determined the deposition conditions under which the melting of a specimen can be limited to a shallow depth, while making depositions of sufficient height on the specimen. These deposition conditions are a laser power of 2.0 kW, a laser traveling speed of 1.5 m/min, and a wire-feeding speed of 7.7 m/min. Further, we confirmed that slight tuning of these deposition conditions even allows for 10-layer depositions and depositions containing curved lines.

Author(s):  
Matthew N. Rush ◽  
Christina Salas ◽  
Lorraine Mottishaw ◽  
Damian Fountain ◽  
Deana Mercer

Abstract Background Ligament reconstruction, as a surgical method used to stabilize joints, requires significant strength and tissue anchoring to restore function. Historically, reconstructive materials have been fraught with problems from an inability to withstand normal physiological loads to difficulties in fabricating the complex organization structure of native tissue at the ligament-to-bone interface. In combination, these factors have prevented the successful realization of nonautograft reconstruction. Methods A review of recent improvements in additive manufacturing techniques and biomaterials highlight possible options for ligament replacement. Description of Technique In combination, three dimensional-printing and electrospinning have begun to provide for nonautograft options that can meet the physiological load and architectures of native tissues; however, a combination of manufacturing methods is needed to allow for bone-ligament enthesis. Hybrid biofabrication of bone-ligament tissue scaffolds, through the simultaneous deposition of disparate materials, offer significant advantages over fused manufacturing methods which lack efficient integration between bone and ligament materials. Results In this review, we discuss the important chemical and biological properties of ligament enthesis and describe recent advancements in additive manufacturing to meet mechanical and biological requirements for a successful bone–ligament–bone interface. Conclusions With continued advancement of additive manufacturing technologies and improved biomaterial properties, tissue engineered bone-ligament scaffolds may soon enter the clinical realm.


2015 ◽  
Author(s):  
Hera Wu ◽  
Shuting Lei

Hydroxyapatite, a bioactive ceramic, has been combined with biodegradable polymers to create composite three-dimensional interconnected porous scaffolds for bone graft substitutes. The materials and fabrication methods of these composite scaffolds are reviewed. The resulting mechanical and biological properties of scaffolds produced from the combination of certain materials and fabrication methods are analyzed. Requirements for a bone graft substitute and third generation scaffolds with the addition of osteoinductive and osteogenic features to composite scaffolds including biomolecule delivery and cell seeding are also introduced. Finally, the benefits of using additive manufacturing technologies to enable high level of control over the design of interconnected pore structure are discussed.


3D Printing ◽  
2017 ◽  
pp. 154-171 ◽  
Author(s):  
Rasheedat M. Mahamood ◽  
Esther T. Akinlabi

Laser additive manufacturing is an advanced manufacturing process for making prototypes as well as functional parts directly from the three dimensional (3D) Computer-Aided Design (CAD) model of the part and the parts are built up adding materials layer after layer, until the part is competed. Of all the additive manufacturing process, laser additive manufacturing is more favoured because of the advantages that laser offers. Laser is characterized by collimated linear beam that can be accurately controlled. This chapter brings to light, the various laser additive manufacturing technologies such as: - selective laser sintering and melting, stereolithography and laser metal deposition. Each of these laser additive manufacturing technologies are described with their merits and demerits as well as their areas of applications. Properties of some of the parts produced through these processes are also reviewed in this chapter.


2021 ◽  
Author(s):  
Yuan Yao ◽  
Cheng Ding ◽  
Mohamed Aburaia ◽  
Maximilian Lackner ◽  
Lanlan He

Abstract The Fused Filament Fabrication process is the most used additive manufacturing process due to its simplicity and low operating costs. In this process, a thermoplastic filament is led through an extruder, melted, and applied to a building platform by the axial movements of an automated Cartesian system in such a way that a three-dimensional object is created layer by layer. Compared to other additive manufacturing technologies, the components produced have mechanical limitations and are often not suitable for functional applications. To reduce the anisotropy of mechanical strength in fused filament fabrication (FFF), this paper proposes a 3D weaving deposit path planning method that utilizes a 5-layer repetitive structure to achieve interlocking and embedding between neighbor slicing planes to improve the mechanical linkage within the layers. The developed algorithm extends the weaving path as an infill pattern to fill different structures and makes this process feasible on a standard three-axis 3D printer. Compared with 3D weaving printed parts by layer-to-layer deposit, the anisotropy of mechanical properties inside layers is significantly reduced to 10.21% and 0.98%.


2021 ◽  
Vol 11 (24) ◽  
pp. 12036
Author(s):  
Tomasz Blachowicz ◽  
Guido Ehrmann ◽  
Andrea Ehrmann

The emerging technology of 3D printing can not only be used for rapid prototyping, but will also play an important role in space exploration. Additive manufactured parts can be used in diverse space applications, such as magnetic shields, heat pipes, thrusters, etc. Three-dimensional printed parts offer reduced mass, high possible complexity, and fast printability of custom-made objects. On the other hand, materials which are not excessively damaged by the harsh conditions in space and are also printable by available technologies are not abundantly available. This review gives an overview of recent metal additive manufacturing technologies and their possible applications in space, with a focus on satellites and rockets, highlighting already applied technologies and materials and gives an outlook on possible future applications and challenges.


Author(s):  
Hany Hassanin ◽  
Ghazal Sheikholeslami ◽  
Pooya Sareh ◽  
Rihana B. Ishaq

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1210 ◽  
Author(s):  
Myoung-Pyo Hong ◽  
Jin-Jae Kim ◽  
Woo-Sung Kim ◽  
Min-Kyu Lee ◽  
Ki-Man Bae ◽  
...  

Additive manufacturing (AM) has recently been receiving global attention. As an innovative alternative to existing manufacturing technologies, AM can produce three-dimensional objects from various materials. In the manufacturing industry, AM improves production cost, time, and quality in comparison to existing methods. In addition, AM is applied in the fabrication and production of objects in diverse fields. In particular, metal AM has been continuously commercialized in high value-added industries such as aerospace and health care by many research and development projects. However, the applicability of metal AM to the mold and die industry and other low value-added industries is limited because AM is not as economical as current manufacturing technologies. Therefore, this paper proposes an effective solution to the problem. This study examines a method for using direct energy deposition and heterogeneous materials, a heterogeneous material additive-manufacturing process for metals used to optimize the cooling channels and a key process in manufacturing hot-stamping dies. The improvements in the cooling performances and uniform cooling were evaluated by heat-flow analysis in a continuous process. Finally, trial products were fabricated using the proposed method, and a trial for hot stamping was conducted to examine the possibility of it being used in commercial applications.


2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Christopher B. Williams ◽  
Farrokh Mistree ◽  
David W. Rosen

Many different additive manufacturing (AM) technologies enable the realization of prototypes and fully-functional artifacts. Although very different in solution principle and embodiment, significant functional commonality exists among the technologies. This commonality affords the authors an opportunity to propose a new classification framework for additive manufacturing technologies. Specifically, by following the systematic abstraction approach proposed by the design methodology of Pahl and Beitz, the authors first identify the working principles of each AM process. A morphological matrix is then employed to functionally present these principles such that commonalities between processes can be identified. In addition to using it as a means of classifying existing processes, the authors present the framework as a tool to aid a designer in the conceptual design of new additive manufacturing technologies. The authors close the paper with an example of such an implementation; specifically, the conceptual design of a novel means of obtaining metal artifacts from three-dimensional printing.


2021 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Hao Fu ◽  
Sakdirat Kaewunruen

Additive manufacturing technologies, well known as three-dimensional printing (3DP) technologies, have been applied in many industrial fields, including aerospace, automobiles, shipbuilding, civil engineering and nuclear power. However, despite the high material utilization and the ability to rapidly construct complex shaped structures of 3D printing technologies, the application of additive manufacturing technologies in railway track infrastructure is still at the exploratory stage. This paper reviews the state-of-the-art research of additive manufacturing technologies related the railway track infrastructure and discusses the challenges and prospects of 3D printing technology in this area. The insights will not only help the development of 3D printing technologies into railway engineering but also enable smarter railway track component design and improve track performance and inspection strategies.


2020 ◽  
Vol 4 (1) ◽  
pp. 13-24
Author(s):  
Hande Güler Özgül ◽  
Onur Tatlı

Along with the technological developments, it is an expected situation to discover new developed production methods. Additive manufacturing technologies, such as three-dimensional (3D) printers are one of these methods, allowing direct production of parts with complex geometries that cannot be produced by conventional methods. The most popular and inexpensive method among additive manufacturing technologies is FDM (Fused Deposition Modeling) method. This method is particularly interesting for the manufacture of parts with low production volumes. In this study, a 3D-FDM printer with a print volume of 200x200x210 mm has been designed and manufactured.PLA (polylactic acid) test samples having 2 different infill geometries were produced with the 3D printer. Tensile, three-point bending and charpyimpact tests were applied to these samples to investigate the effect of inner filling geometry on mechanical properties. The inner filling geometries are in the form of grid and gyroid. According to the results, while the geometry with the tensile force is "grid", while the geometry with the maximum bending force is "gyroid".It was concluded that different inner filling geometries do not have a significant impact on Charpy impact strength.


Sign in / Sign up

Export Citation Format

Share Document