Three-Dimensional Movement in Water of the Dolphin Robot - Control Between Two Positions by Roll and Pitch Combination -

2006 ◽  
Vol 18 (3) ◽  
pp. 347-355 ◽  
Author(s):  
Motomu Nakashima ◽  
◽  
Takahiro Tsubaki ◽  
Kyosuke Ono ◽  
◽  
...  

The purpose of this study is to have a biomimetic robot realize the three-dimensional maneuverability of fast-swimming animals such as dolphins. In the preceding paper, a dolphin robot whose length is 1m was developed, and loop-the-loop motion in water performed. In the present report, a reference trajectory from a start position to an end position was first planned using the combined motions of roll and pitch. Next, a simulation method to analyze the three-dimensional dynamics of the dolphin robot was developed, then used to investigate feedback controls for roll, pitch, and yaw. It was found in the simulation that the proposed feedback control scheme was sufficient for tracking the reference trajectory. Finally, swimming experiments were conducted to determine the validity of the simulation method and the control algorithm. The control performance in experiments was found to be satisfactory, although the optimal feedback gain was found to be somewhat different from that in the simulation. This paper is the full translation from the transactions of JSME Series C, Vol.71, No.702, 2005.

2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110042
Author(s):  
Zhishuang Xue ◽  
Xiaofang Liu

This paper is concerned with trajectory planning for unmanned aerial vehicle in a three-dimensional complex workspace. Biogeography-based optimization algorithm is widely used in solving practical problems because of its fewer parameters, fast convergence rate, and good global optimization ability. In this paper, some improvements, modifying migration and mutation operations are made on the biogeography-based optimization algorithm to make it suitable for solving the trajectory planning problem. The optimal trajectory obtained by the improved algorithm can be used to generate the reference trajectory. Then, a control scheme of unmanned aerial vehicle based on the Lyapunov theory and radial basis function neural network is formed to track the reference trajectory. The improved trajectory algorithm generates the shortest trajectory and the time consumption is the lowest. Finally, the designed control scheme makes the unmanned aerial vehicle track the different trajectories quite well, the effectiveness of it can be illustrated by algorithm accuracy and electricity consumption.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199399
Author(s):  
Xiaoguang Li ◽  
Bi Zhang ◽  
Daohui Zhang ◽  
Xingang Zhao ◽  
Jianda Han

Shape memory alloy (SMA) has been utilized as the material of smart actuators due to the miniaturization and lightweight. However, the nonlinearity and hysteresis of SMA material seriously affect the precise control. In this article, a novel disturbance compensation-based adaptive control scheme is developed to improve the control performance of SMA actuator system. Firstly, the nominal model is constructed based on the physical process. Next, an estimator is developed to online update not only the unmeasured system states but also the total disturbance. Then, the novel adaptive controller, which is composed of the nominal control law and the compensation control law, is designed. Finally, the proposed scheme is evaluated in the SMA experimental setup. The comparison results have demonstrated that the proposed control method can track reference trajectory accurately, reject load variations and stochastic disturbances timely, and exhibit satisfactory robust stability. The proposed control scheme is system independent and has some potential in other types of SMA-actuated systems.


2020 ◽  
Vol 12 (1) ◽  
pp. 703-717
Author(s):  
Yin Wei ◽  
Wang Jiaqi ◽  
Bai Xiaomin ◽  
Sun Wenjie ◽  
Zhou Zheyuan

AbstractThis article analyzes the technical difficulties in full-section backfill mining and briefly introduces the technical principle and advantages of backfilling combined with caving fully mechanized mining (BCCFM). To reveal the strata behavior law of the BCCFM workface, this work establishes a three-dimensional numerical model and designs a simulation method by dynamically updating the modulus parameter of the filling body. By the analysis of numerical simulation, the following conclusions about strata behavior of the BCCFM workface were drawn. (1) The strata behavior of the BCCFM workface shows significant nonsymmetrical characteristics, and the pressure in the caving section is higher than that in the backfilling section. φ has the greatest influence on the backfilling section and the least influence on the caving section. C has a significant influence on the range of abutment pressure in the backfilling section. (2) There exits the transition area with strong mine pressure of the BCCFM workface. φ and C have significant effect on the degree of pressure concentration but little effect on the influence range of strong mine pressure in the transition area. (3) Under different conditions, the influence range of strong mine pressure is all less than 6 m. This article puts forward a control strategy of mine pressure in the transition area, which is appropriately improving the strength of the transition hydraulic support within the influence range (6 m) in the transition area according to the pressure concentration coefficient. The field measurement value of Ji15-31010 workface was consistent with numerical simulation, which verifies the reliability of control strategy of the BCCFM workface.


1965 ◽  
Vol 111 (474) ◽  
pp. 391-398 ◽  
Author(s):  
Andrew McGhie ◽  
James Chapman ◽  
J. S. Lawson

In the preceding paper the effect of experimental distraction was examined and the findings discussed. The present report is concerned with a similar study of the effect of distraction on tests which involve another aspect of schizophrenic performance, that of psychomotor ability. Earlier studies (Chapman and McGhie, 1961, 1962) produced both clinical and experimental evidence that auditory distraction disrupted the motor responses of some schizophrenic patients. As the previous experimental findings were based on two tests involving only very limited areas of psychomotor performance, it was necessary to examine patients on a wide range of psychomotor tests. A second aim of the present investigation was to assess any differential effects due to variation in the sensory modality of the distracting stimuli.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhengzhi Wang ◽  
Chunling Zhu

In view of the rotor icing problems, the influence of centrifugal force on rotor blade icing is investigated. A numerical simulation method of three-dimensional rotor blade icing is presented. Body-fitted grids around the rotor blade are generated using overlapping grid technology and rotor flow field characteristics are obtained by solving N-S equations. According to Eulerian two-phase flow, the droplet trajectories are calculated and droplet impingement characteristics are obtained. The mass and energy conservation equations of ice accretion model are established and a new calculation method of runback water mass based on shear stress and centrifugal force is proposed to simulate water flow and ice shape. The calculation results are compared with available experimental results in order to verify the correctness of the numerical simulation method. The influence of centrifugal force on rotor icing is calculated. The results show that the flow direction and distribution of liquid water on rotor surfaces change under the action of centrifugal force, which lead to the increasing of icing at the stagnation point and the decreasing of icing on both frozen limitations.


2017 ◽  
Vol 34 (5) ◽  
pp. 1551-1571 ◽  
Author(s):  
Ming Xia

Purpose The main purpose of this paper is to present a comprehensive upscale theory of the thermo-mechanical coupling particle simulation for three-dimensional (3D) large-scale non-isothermal problems, so that a small 3D length-scale particle model can exactly reproduce the same mechanical and thermal results with that of a large 3D length-scale one. Design/methodology/approach The objective is achieved by following the scaling methodology proposed by Feng and Owen (2014). Findings After four basic physical quantities and their similarity-ratios are chosen, the derived quantities and its similarity-ratios can be derived from its dimensions. As the proposed comprehensive 3D upscale theory contains five similarity criteria, it reveals the intrinsic relationship between the particle-simulation solution obtained from a small 3D length-scale (e.g. a laboratory length-scale) model and that obtained from a large 3D length-scale (e.g. a geological length-scale) one. The scale invariance of the 3D interaction law in the thermo-mechanical coupled particle model is examined. The proposed 3D upscale theory is tested through two typical examples. Finally, a practical application example of 3D transient heat flow in a solid with constant heat flux is given to illustrate the performance of the proposed 3D upscale theory in the thermo-mechanical coupling particle simulation of 3D large-scale non-isothermal problems. Both the benchmark tests and application example are provided to demonstrate the correctness and usefulness of the proposed 3D upscale theory for simulating 3D non-isothermal problems using the particle simulation method. Originality/value The paper provides some important theoretical guidance to modeling 3D large-scale non-isothermal problems at both the engineering length-scale (i.e. the meter-scale) and the geological length-scale (i.e. the kilometer-scale) using the particle simulation method directly.


2014 ◽  
Vol 1008-1009 ◽  
pp. 850-860 ◽  
Author(s):  
Zhou Wei Zhang ◽  
Jia Xing Xue ◽  
Ya Hong Wang

A calculation method for counter-current type coil-wound heat exchanger is presented for heat exchange process. The numerical simulation method is applied to determine the basic physical parameters of wound bundles. By controlling the inlet fluid velocity varying in coil-wound heat exchanger to program and calculate the iterative process. The calculation data is analyzed by comparison of numerical result and the unit three dimensional pipe bundle model was built. Studies show that the introduction of numerical simulation can simplify the pipe winding process and accelerate the calculation and design of overall configuration in coil-wound heat exchanger. This method can be applied to the physical modeling and heat transfer calculation of pipe bundles in coil wound heat exchanger, program to calculate the complex heat transfer changing with velocity and other parameters, and optimize the overall design and calculation of spiral bundles.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Peter Fietkau ◽  
Bernd Bertsche

This paper describes an efficient transient elastohydrodynamic simulation method for gear contacts. The model uses oil films and elastic deformations directly in the multibody simulation, and is based on the Reynolds equation including squeeze and wedge terms as well as an elastic half-space. Two transient solutions to this problem, an analytical and a numerical one, were developed. The analytical solution is accomplished using assumptions for the gap shape and the pressure in the middle of the gap. The numerical problem is solved using multilevel multi-integration algorithms. With this approach, tooth impacts during gear rattling as well as highly loaded power-transmitting gear contacts can be investigated and lubrication conditions like gap heights or type of friction may be determined. The method was implemented in the multibody simulation environment SIMPACK. Therefore it is easy to transfer the developed element to other models and use it for a multitude of different engineering problems. A detailed three-dimensional elastic multibody model of an experimental transmission is used to validate the developed method. Important values of the gear contact like normal and tangential forces, proportion of dry friction, and minimum gap heights are calculated and studied for different conditions. In addition, pressure distributions on tooth flanks as well as gap forms are determined based on the numerical solution method. Finally, the simulation approach is validated with measurements and shows good consistency. The simulation model is therefore capable of predicting transient gear contact under different operating conditions such as load vibrations or gear rattling. Simulations of complete transmissions are possible and therefore a direct determination of transmission vibration behavior and structure-borne noise as well as of forces and lubrication conditions can be done.


Author(s):  
Hao Gong ◽  
Jianhua Liu ◽  
Xiaoyu Ding

An understanding of conditions that trigger the loosening of bolted joints is essential to ensure joint reliability. In this study, a three-dimensional finite element model of a typical bolted joint is developed, and a new simulation method is proposed to quantitatively identify the critical transverse force for initiating loosening. This force is used to evaluate the anti-loosening capacity of bolted joints. Using the proposed simulation method, the effects of factors affecting critical loosening are systematically studied. It is found that the preload, frictional coefficients at the thread and the bearing surfaces, clamped length, and fit tolerance mainly affected loosening. When the preload and friction coefficients are increased, and the clamped length and fit tolerance are reduced, loosening is inhibited. Experiments are performed to demonstrate the reliability of the results. Finally, a suggestion is proposed to improve the design guideline VDI 2230 for bolted joints, which considers the requirement of avoiding loosening under vibrational loading.


2008 ◽  
Vol 392-394 ◽  
pp. 151-155
Author(s):  
Tong Wang ◽  
K. Jiang ◽  
Shu Qiang Xie ◽  
Shuang Shuang Hao

In this paper, the characteristics and general laws of cutting complex curved surface by wire electrical discharge machining (WEDM) system are studied. Based on analysis of motion parameters the universal mathematical model of polar coordinates is derived. Moreover, the simulation of WEDM system is introduced, which is carried out by using language Visual C++ and the three dimensional graph software OpenGL.This simulation method is helpful in improving machining quality and productivity of complex curved surfaces, and is fundation for establishing CAD/CAPP/CAM technology in WEDM.


Sign in / Sign up

Export Citation Format

Share Document