Detecting Feature of Haptic Interaction Based on Distributed Tactile Sensor Network on Whole Body

2007 ◽  
Vol 19 (1) ◽  
pp. 42-51 ◽  
Author(s):  
Tomoyuki Noda ◽  
◽  
Takahiro Miyashita ◽  
Hiroshi Ishiguro ◽  
Kiyoshi Kogure ◽  
...  

To extract information about users contacting robots physically, the distribution density of tactile sensor elements, the sampling rate, and the resolution all must be high, increasing the volume of tactile information. In the self-organized skin sensor network we propose for dealing with a large number of tactile sensors embedded throughout a humanoid robot, each network node having a processing unit is connected to tactile sensor elements and other nodes. By processing tactile information in the network based on the situation, individual nodes process and reduce information rapidly in high sampling. They also secure information transmission routes to the host PC using a data transmission protocol for self-organizing sensor networks. In this paper, we verify effectiveness of our proposal through sensor network emulation and basic experiments in spatiotemporal calculation of tactile information using prototype hardware. As an emulation result of the self-organized sensor network, routes to the host PC are secured at each node, and a tree-like network is constructed recursively with the node as a root. As the basic experiments, we describe an edge detection as data processing and extraction for haptic interaction. In conclusion, local information processing is effective for detecting features of haptic interaction.

2012 ◽  
Vol 2012 ◽  
pp. 1-27 ◽  
Author(s):  
Tomoaki Yoshikai ◽  
Marika Hayashi ◽  
Yui Ishizaka ◽  
Hiroko Fukushima ◽  
Asuka Kadowaki ◽  
...  

In order to achieve robots' working around humans, safe contacts against objects, humans, and environments with broad area of their body should be allowed. Furthermore, it is desirable to actively use those contacts for achieving tasks. Considering that, many practical applications will be realized by whole-body close interaction of many contacts with others. Therefore, robots are strongly expected to achieve whole-body interaction behavior with objects around them. Recently, it becomes possible to construct whole-body tactile sensor network by the advancement of research for tactile sensing system. Using such tactile sensors, some research groups have developed robots with whole-body tactile sensing exterior. However, their basic strategy is making a distributed 1-axis tactile sensor network covered with soft thin material. Those are not sufficient for achieving close interaction and detecting complicated contact changes. Therefore, we propose “Soft Sensor Flesh.” Basic idea of “Soft Sensor Flesh” is constructing robots' exterior with soft and thick foam with many sensor elements including multiaxis tactile sensors. In this paper, a constructing method for the robot systems with such soft sensor flesh is argued. Also, we develop some prototypes of soft sensor flesh and verify the feasibility of the proposed idea by actual behavior experiments.


2019 ◽  
Vol 42 ◽  
Author(s):  
Lucio Tonello ◽  
Luca Giacobbi ◽  
Alberto Pettenon ◽  
Alessandro Scuotto ◽  
Massimo Cocchi ◽  
...  

AbstractAutism spectrum disorder (ASD) subjects can present temporary behaviors of acute agitation and aggressiveness, named problem behaviors. They have been shown to be consistent with the self-organized criticality (SOC), a model wherein occasionally occurring “catastrophic events” are necessary in order to maintain a self-organized “critical equilibrium.” The SOC can represent the psychopathology network structures and additionally suggests that they can be considered as self-organized systems.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 173
Author(s):  
Marina Kurbasic ◽  
Ana M. Garcia ◽  
Simone Viada ◽  
Silvia Marchesan

Bioactive hydrogels based on the self-assembly of tripeptides have attracted great interest in recent years. In particular, the search is active for sequences that are able to mimic enzymes when they are self-organized in a nanostructured hydrogel, so as to provide a smart catalytic (bio)material whose activity can be switched on/off with assembly/disassembly. Within the diverse enzymes that have been targeted for mimicry, hydrolases find wide application in biomaterials, ranging from their use to convert prodrugs into active compounds to their ability to work in reverse and catalyze a plethora of reactions. We recently reported the minimalistic l-His–d-Phe–d-Phe for its ability to self-organize into thermoreversible and biocatalytic hydrogels for esterase mimicry. In this work, we analyze the effects of terminus modifications that mimic the inclusion of the tripeptide in a longer sequence. Therefore, three analogues, i.e., N-acetylated, C-amidated, or both, were synthesized, purified, characterized by several techniques, and probed for self-assembly, hydrogelation, and esterase-like biocatalysis. This work provides useful insights into how chemical modifications at the termini affect self-assembly into biocatalytic hydrogels, and these data may become useful for the future design of supramolecular catalysts for enhanced performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephan Appelfeller

AbstractThe self-organized formation of single domain Au silicide nanowires is observed on Si(110). These nanowires are analysed using scanning tunnelling microscopy (STM) and spectroscopy (STS) as well as photoemission spectroscopy (PES). Core-level PES is utilised to confirm the formation of Au silicide and establish its presence as the top most surface structure, i.e., the nanowires. The growth of the Au silicide nanowires and their dimensions are studied by STM. They form for Au coverages of about 1 monolayer and are characterized by widths of about 2 to 3 nm and heights below 1 nm while reaching lengths exceeding 500 nm when choosing appropriate annealing temperatures. Valence band PES and STS indicate a small but finite density of states at the Fermi level typical for compound metals.


2021 ◽  
Vol 11 (14) ◽  
pp. 6575
Author(s):  
Yu Yang ◽  
Adrian Keller

Ion beam irradiation of solid surfaces may result in the self-organized formation of well-defined topographic nanopatterns. Depending on the irradiation conditions and the material properties, isotropic or anisotropic patterns of differently shaped features may be obtained. Most intriguingly, the periodicities of these patterns can be adjusted in the range between less than twenty and several hundred nanometers, which covers the dimensions of many cellular and extracellular features. However, even though ion beam nanopatterning has been studied for several decades and is nowadays widely employed in the fabrication of functional surfaces, it has found its way into the biomaterials field only recently. This review provides a brief overview of the basics of ion beam nanopatterning, emphasizes aspects of particular relevance for biomaterials applications, and summarizes a number of recent studies that investigated the effects of such nanopatterned surfaces on the adsorption of biomolecules and the response of adhering cells. Finally, promising future directions and potential translational challenges are identified.


1997 ◽  
Vol 56 (6) ◽  
pp. 6710-6718 ◽  
Author(s):  
Hans-Henrik Stølum

2000 ◽  
Vol 638 ◽  
Author(s):  
Alan D.F. Dunbar ◽  
Matthew P. Halsall ◽  
Uschi Bangert ◽  
Alan Harvey ◽  
Philip Dawson ◽  
...  

AbstractWe report optical and scanning transmission electron microscopy studies of germanium dots grown on silicon. In an attempt to control the self-organized growth process and promote dot size uniformity the dot layers were grown on a 4.5nm Si0.6Ge0.4 alloy template layer. Photoluminescence results indicate the formation of carrier confining Ge rich islands, whilst Raman scattering results indicate the presence of an alloy throughout the structures formed. The samples were studied in the UK high resolution scanning transmission electron microscopy facility at Liverpool, UK. Energy dispersive analysis of individual line scans through the sample show that the structures are composed of an alloy throughout with an asymmetric distribution of Germanium in the dots and in the wetting layer close to the dots. We discuss the results in the light of the proposed growth mode for these dots and conclude that attempts to manipulate the composition of these dots during growth may be problematic due to the self-organized nature of their formation.


Sign in / Sign up

Export Citation Format

Share Document