scholarly journals Application of Enzyme for Bleaching of Wheat Straw AQ-Soda Pulp

Author(s):  
Ghafoor A ◽  
Cheema K. J. ◽  
Yaqoob N. ◽  
Rehman I.Ur- ◽  
Said A

Pulp and paper industry is one of the major contributors to environmental pollution due to its toxic and carcinogenic discharges during its various processes e.g., chlorinated bleaching of the pulp. Use of alternative bleaching chemicals e.g., enzyme and/or elemental chlorine free (ECF) or total chlorine free (TCF) agents are the best option to reduce the load of carcinogenic chlorinated compounds on our environment. Present study was carried out to highlight the application of enzyme during bleaching of wheat straw anthraquinon (AQ)-soda pulp to considerably reduce the toxic load on the environment. Wheat straw AQ-soda pulp was treated with acid (A) to reduce its metal contents followed by oxygen (O) delignification. Delignified pulp was then subjected to enzymatic (X) treatment with xylanase prior to bleaching to increase the effectiveness of successive bleaching with hydrogen peroxide (P). Handsheets were prepared from the treated pulp after each experimental trial to study its various optical, physical and chemical properties. Brightness of bleached pulp was improved up to ISO 73% with AOXP1P2 bleaching sequence. The improved brightness up to ISO 76% was achieved when alkali extraction stage was incorporated before bleaching with hydrogen peroxide (AOXEP1P2). TDS, COD and BOD5 of effluent samples during different experimental stages was monitored and compared with NEQS. It was evident from the results that enzymatic treatment not only helped to reduce the effluent load but also reduced the consumption of bleaching chemicals to achieve good brightness values.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Juan José Martínez-Nicolás ◽  
Pilar Legua ◽  
Dámaris Núñez-Gómez ◽  
Rafael Martínez-Font ◽  
Francisca Hernández ◽  
...  

AbstractFor the maintenance of the economic activity of the ports, it is necessary to dredge the marine sediments in order to guarantee their depth. These sediments, considered by European legislation as residues, present relevant limitations of use and generate environmental and economic problems concerning their final disposal. In this context, the present work aims to identify the phytoremediated dredged sediments potential as an alternative to the traditional substrate (peat) in horticultural growing through two-years controlled strawberry cultivation. The growing media mixes used were: (1) 100% peat (Pt) as a control substrate; (2) 100% dredged remediated sediment (DRS); (3) 50% each (Pt-DRS). The dredged sediment, plant drainage and strawberry plant parts (leaves, stems, roots, and fruits) were analyzed to mineral elements, heavy metal contents, and pesticide residues (polycyclic aromatic hydrocarbons, polychlorinated biphenyls and specific fumigants) during the experimental period. Only seven (Mn, Fe, Zn, Mo, Al, Mn and Ni) of the twenty-two metals and two (nitrates and fluorene) of the six hundred-thirteen pesticides analyzed were detected in the strawberry fruits. In all the cases, values detected were under the Spanish and European legal limit. The suitability of strawberry fruits for fresh and/or processed consumption with no risk was confirmed. Based on the results, can be affirmed that the dredged remediated sediment can be used as a culture substrate, alone or mixed with other substrates. Additional researches should be carried out to confirm the sediment characteristics and compare with other substrates to improve the physical and chemical properties.


1994 ◽  
Vol 24 (10) ◽  
pp. 2078-2084 ◽  
Author(s):  
Kwei-Nam Law ◽  
Jacques L. Valade

Although jack pine (Pinusbanksiana Lamb.), which represents 20% of the total softwood volume, is one of the most abundant commercial softwood species in Canada, its rate of utilization in pulping is surprisingly low. This paper reviews the literature concerning the physical and chemical properties as well as the pulping characteristics of this species by mechanical, thermomechanical, chemithermomechanical, chemimechanical, and chemical processes to better understand its potential use in papermaking. The objective is to identify the problems related to the use of jack pine so that solutions might be sought to promote its usage. Some recommendations are put forth concerning future research.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 274
Author(s):  
Davide Piccinino ◽  
Eliana Capecchi ◽  
Elisabetta Tomaino ◽  
Sofia Gabellone ◽  
Valeria Gigli ◽  
...  

Green, biocompatible, and biodegradable antioxidants represent a milestone in cosmetic and cosmeceutical applications. Lignin is the most abundant polyphenol in nature, recovered as a low-cost waste from the pulp and paper industry and biorefinery. This polymer is characterized by beneficial physical and chemical properties which are improved at the nanoscale level due to the emergence of antioxidant and UV shielding activities. Here we review the use of lignin nanoparticles in cosmetic and cosmeceutical applications, focusing on sunscreen and antiaging formulations. Advances in the technology for the preparation of lignin nanoparticles are described highlighting structure activity relationships.


2020 ◽  
Vol 17 (4) ◽  
pp. 89-95
Author(s):  
Alexander L. Urakov

The literature review shows that standards for the treatment of purulent diseases to date include antiseptic and disinfectants, but do not include agents that dilute and/or dissolve thick pus. It is shown that the pharmacodynamics of antiseptic and disinfectants consists in the local disinfecting effect of these agents. With local interaction with the surface of living and non-living tissues, these agents are able to sterilize it. It was found that for disinfection of the selected surfaces, these agents are used in solutions that contain these agents in concentrations that provide a denaturing effect. It is shown that denaturing action of antiseptic and disinfectants is a special case of dependence of local action of solutions of all medicines and chemical compounds on their concentration. The fact is that increasing the concentration of chemical compounds in solutions sooner or later turns that solutions into a liquid medium that is not compatible with life. Therefore, this liquid kills all cells of the micro-and macroworld. That is why the use of solutions with denaturing action provides a detrimental effect on the cells of all microorganisms and cells of the macroorganism. With local interaction with the tissues of the macroorganism, the drugs cause the following pharmacological effects: local sterilizing, irritating (local inflammatory) and cauterizing (necrotic) action. Thus solutions with denaturing concentration of one means increase the hardness, other means do not change the hardness, and the third means decrease the hardness of biological tissues, including purulent masses. From this it is concluded that today in the treatment of purulent diseases are used means, detrimental effect on all forms of life, and not means, unidirectionally acting on purulent masses. At the same time, it is shown that some of the modern antiseptic and disinfectants can change the properties of purulent masses in the right direction and optimize their removal by diluting and dissolving the thick pus. It is established that the leaders in the solvent action on thick and sticky pus are sodium bicarbonate solutions in combination with hydrogen peroxide. It is shown that solutions that effectively dissolve thick pus have special physical and chemical properties: all of them have moderate alkaline, temperature, boiling and osmotic activity. Preparations that most effectively dissolve thick pus and most quickly and completely remove it out of the purulent cavities, additionally contain carbon dioxide gas or oxygen gas under excessive pressure. In chronological order are recipes invented hygiene products with special physical and chemical properties, providing them with the ability to quickly and effectively liquefy, dissolve and remove the thick pus out of the purulent cavities. It is shown that a new group of hygiene products was discovered in Russia and was called Solvents of pus. The most effective and safe solvents of pus are warm (heated to a temperature of 42 C) solutions containing 24% sodium bicarbonate and 0.53% hydrogen peroxide.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-12 ◽  

Lignin is an industrial by-product produced from the pulping and paper industry, where the process generates lignin in the form of lignosulphonates. While there are many applications for lignin, there are all low value and attempts to add value to lignin are hindered by its complex physicochemical nature and the presence of sulphur. Adopting the biorefining concept, the study evaluates the impact of direct (DE) and sequential extraction (SE) of Miscanthus x giganteus using sub-critical water with associated modifiers; ethanol and carbon dioxide on the physical and chemical properties of the extracted lignin. Isolated lignins were characterised by a Fourier Transform Infrared Spectroscopy (FTIR). Although higher delignification was achieved by DE and SE about 81.5% and 58.0%, respectively, the lignin recovered from the SE process showed remarkably higher purity with 91.5%. Lignin recovery did not differ considerably for either processing method. FTIR revealed a qualitative reduction in the intensity of bonds corresponding to hydroxyl groups for the lignin derived from DE rather than SE processing routes. These indicated that the lignin derived from SE had potential for subsequent preparation in lignin value-added bio-based materials.


2020 ◽  
Vol 12 (5) ◽  
pp. 1922 ◽  
Author(s):  
Huanhuan Wang ◽  
Tianbao Ren ◽  
Huijuan Yang ◽  
Yuqing Feng ◽  
Huilin Feng ◽  
...  

This study aimed to explore a new way to address the burning of agricultural waste in China while achieving the sustainable use of it. Three agricultural wastes (Wheat straw, peanut shell, and rice husk) were slowly pyrolyzed into biochar, which was subsequently added to the soil to reduce CO2 emissions from the soil, and to improve soil fertility as well as microbial community structure. The biochar and raw materials were added to the soil and cultured under controlled conditions, and then the CO2 emissions produced from the mixing. At the same time, this study used pot experiments to determine the effects of biochar on tobacco soil physical and chemical properties and, therefore, the microbial communities of the soil. This study suggests that (1) biochar can effectively reduce soil CO2 emission rate. Compared with the control, peanut shell biochar could reduce the total CO2 emissions of soil by 33.41%, and the total CO2 emissions of wheat straw biochar treatment was 90.25% lower than that of wheat straw treatment. (2) The soil’s physical and chemical properties were improved. The soil bulk density of wheat straw biochar treatment kept 34.57% lower than that of the control as well as 21.15% lower than that of wheat straw treatment. The soil’s organic carbon of peanut shell biochar treatment was 87.62% more than that of peanut shell treatment. (3) Biochar changed soil microbial community structure. (4) Biochar is suitable for tobacco growth. Peanut husk biochar significantly increased the total biomass of tobacco, and wheat straw biochar significantly increased tobacco root vigor. This study concluded that processing Chinese agricultural waste into biochar and adding it to the soil instead of burning it directly would be an effective means to reduce greenhouse gas emissions, to improve soil, and to promote crop growth.


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Author(s):  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Biomimetics involves investigation of structure, function, and methods of synthesis of biological composite materials. The goal is to apply this information to the design and synthesis of materials for engineering applications.Properties of engineering materials are structure sensitive through the whole spectrum of dimensions from nanometer to macro scale. The goal in designing and processing of technological materials, therefore, is to control microstructural evolution at each of these dimensions so as to achieve predictable physical and chemical properties. Control at each successive level of dimension, however, is a major challenge as is the retention of integrity between successive levels. Engineering materials are rarely fabricated to achieve more than a few of the desired properties and the synthesis techniques usually involve high temperature or low pressure conditions that are energy inefficient and environmentally damaging.In contrast to human-made materials, organisms synthesize composites whose intricate structures are more controlled at each scale and hierarchical order.


Sign in / Sign up

Export Citation Format

Share Document